The Sine Rule

REVISE THIS
TOPIC

1
Work out the length of side x.

$$
\begin{aligned}
\frac{x}{\sin (24)} & =\frac{11}{\sin (75)} \\
x & =\frac{11 \sin (24)}{\sin (75)}
\end{aligned}
$$

$$
x=\quad 4 \cdot 6 \mathrm{~cm}
$$

2 Work out the length of side x.

Not drawn accurately
Not drawn accurately

3
Work out the size of angle x.

Not drawn accurately

$$
\begin{array}{ll}
\frac{\sin (x)}{14}=\frac{\sin (77)}{20} & \sin (x)=0.68205 \ldots \\
\sin (x)=\frac{14 \sin (77)}{20} & x=\sin ^{-1}(0.6820 \ldots)
\end{array}
$$

$$
x=4,4 \cdot 0
$$

4 Work out the size of angle x.

Not drawn accurately

$$
\begin{array}{ll}
\frac{\sin (x)}{38}=\frac{\sin (92)}{50} & \sin (x)=0.75953 \ldots \\
\sin (x)=\frac{38 \sin (92)}{50} & x=\sin ^{-1}(0.75953 \ldots) \\
\hline
\end{array}
$$

$$
x=\quad 49.4
$$

5 Work out the length of side x.

Not drawn accurately
\qquad
\qquad

$$
x=
$$

\qquad cm

6
Work out the size of angle x.

7 Given that angle x is obtuse, work out its size.

x is obtuse so $180-63.2695 \ldots$

$$
x=\quad 116.7
$$

8 Work out the length of side x.
Give your answer in the form $k \sqrt{6}$, where k is an integer.

Not drawn accurately
[4 marks]

$A B C$ and $B C D$ are triangles.

Not drawn accurately

The area of triangle $A B C$ is $154 \mathrm{~cm}^{2}$
Work out the size of angle $A B D$.

$$
\begin{aligned}
\frac{1}{2} \times 14 \times h & =154 \\
7 h & =154 \\
h & =22 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{\sin (x)}{12}=\frac{\sin (73)}{22} & \tan (y)=\frac{14}{22} \\
\sin (x)=\frac{12 \sin (73)}{22} & y=\tan ^{-1}\left(\frac{14}{22}\right)
\end{array}
$$

$$
\begin{array}{rlr}
\sin (x) & =0.5216 \ldots \\
x & =\sin ^{-1}(0.5216 \ldots) \\
x & =31.441 \ldots \quad 31.441 \ldots+32.477
\end{array}
$$

$A B C D E$ is a regular pentagon $A E F$ and $C D G$ are triangles.
$F E D G$ is a straight line.

Work out the size of angle x.

$$
\begin{array}{r}
\text { angle } A E F=\text { angle } C D G=\frac{360}{5}=72^{\circ} \\
\begin{array}{r}
\frac{y}{\sin (62)}=\frac{8}{\sin (72)} \quad \frac{\sin (x)}{7.427 \ldots}=\frac{\sin (72)}{20} \\
y=\frac{8 \sin (62)}{\sin (72)}
\end{array} \quad \sin (x)=\frac{7.42 \sin (72)}{20} \\
y=7.427 \ldots \quad \\
\begin{array}{r}
x=\sin ^{-1}(0.35317 \ldots \\
\\
x=20.68188298
\end{array}
\end{array}
$$

\qquad
\qquad

Answer
20.7
$11 \quad A B C$ is a triangle.
$A B D$ is a sector with centre A.

Not drawn accurately

Work out the area of sector $A B D$.

$$
\begin{array}{cl}
\frac{\sin (x)}{15}=\frac{\sin (32)}{9} & \sin (x)=0.8831 \ldots \\
\sin (x)=\frac{15 \sin (32)}{9} & x=\sin ^{-1}(0.8831 \ldots) \\
&
\end{array}
$$

$$
\text { Area }=\frac{62.03 \ldots}{360} \times \pi \times 9^{2}
$$

$=43.8468971$
\qquad
\qquad

Answer \qquad cm^{2}

