1 Find the coordinates of the turning point on the curve with equation $y=x^{2}+2 x+7$ You must show all your working.

$$
\begin{aligned}
& (x+1)^{2}-1+7 \\
& =(x+1)^{2}+6
\end{aligned}
$$

(Total for Question 1 is $\mathbf{3}$ marks)
2 Find the coordinates of the turning point on the curve with equation $y=x^{2}+6 x+13$ You must show all your working.

$$
\begin{aligned}
& (x+3)^{2}-9+13 \\
= & (x+3)^{2}+4
\end{aligned}
$$

(Total for Question 2 is $\mathbf{3}$ marks)
3 Find the coordinates of the turning point on the curve with equation $y=x^{2}-10 x+29$ You must show all your working.

$$
\begin{aligned}
& (x-5)^{2}-25+29 \\
= & (x-5)^{2}+4
\end{aligned}
$$

- $\mathrm{s}^{\mathbf{\gamma}}$ @ @1stclassmaths

4 Find the coordinates of the turning point on the curve with equation $y=x^{2}-2 x-7$
You must show all your working.

$$
\begin{aligned}
& (x-1)^{2}-1-7 \\
= & (x-1)^{2}-8
\end{aligned}
$$

(Total for Question 4 is $\mathbf{3}$ marks)
5 Find the coordinates of the turning point on the curve with equation $y=x^{2}+12 x+40$ You must show all your working.

$$
\begin{aligned}
& (x+6)^{2}-36+40 \\
= & (x+6)^{2}+4
\end{aligned}
$$

6 Find the coordinates of the turning point on the curve with equation $y=x^{2}-3 x+4$ You must show all your working.

$$
\begin{aligned}
& (x-3 / 2)^{2}-\frac{9}{4}+4 \\
= & (x-3 / 2)^{2}-\frac{9}{4}+\frac{16}{4} \\
= & (x-3 / 2)^{2}+\frac{7}{4}
\end{aligned}
$$

7 Find the coordinates of the turning point on the curve with equation $y=x^{2}-5 x-9$ You must show all your working.

$$
\begin{aligned}
& \left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}-9 \\
= & \left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}-\frac{36}{54} \\
= & \left(x-\frac{5}{2}\right)^{2}-\frac{61}{4}
\end{aligned}
$$

8 A curve with equation $y=x^{2}+b x+c$ has a turning point at the point (4, -2$)$ Work out the value of b and c.

$$
\begin{aligned}
& (x-4)^{2}-2 \\
= & (x-4)(x-4)-2 \\
= & x^{2}-4 x-4 x+16-2 \\
= & x^{2}-8 x+14
\end{aligned}
$$

$$
a=.
$$

\qquad

$$
b=.
$$

\qquad
(Total for Question 8 is $\mathbf{3}$ marks)
9 A curve with equation $y=x^{2}+b x+c$ has a turning point at the point $(-4,9)$ Work out the value of b and c.

$$
\begin{aligned}
& (x+4)^{2}+9 \\
= & (x+4)(x+4)+9 \\
= & x^{2}+4 x+4 x+16+9 \\
= & x^{2}+8 x+25
\end{aligned}
$$

(Total for Question 9 is $\mathbf{3}$ marks)
10 A curve with equation $y=x^{2}+b x+c$ has a turning point at the point $(-3,-3)$ Work out the value of b and c.

$$
\begin{aligned}
& (x+3)^{2}-3 \\
= & (x+3)(x+3)-3 \\
= & x^{2}+3 x+3 x+9-3 \\
= & x^{2}+6 x+6
\end{aligned}
$$

$$
a=
$$

\qquad

$$
b=
$$

\qquad (Total for Question 10 is $\mathbf{3}$ marks)

11 Find the coordinates of the turning point on the curve with equation $y=2 x^{2}-8 x+33$ You must show all your working.

$$
\begin{aligned}
& 2\left[x^{2}-4 x\right]+33 \\
= & 2\left[(x-2)^{2}-4\right]+33 \\
= & 2(x-2)^{2}-8+33 \\
= & 2(x-2)^{2}+25
\end{aligned}
$$

$$
25
$$

(Total for Question 11 is $\mathbf{4}$ marks)
12 Find the coordinates of the turning point on the curve with equation $y=3 x^{2}+18 x-4$ You must show all your working.

$$
\begin{aligned}
& 3\left[x^{2}+6 x\right]-4 \\
= & 3\left[(x+3)^{2}-9\right]-4 \\
= & 3(x+3)^{2}-27-4 \\
= & 3(x+3)^{2}-31
\end{aligned}
$$

(Total for Question 12 is 4 marks)
13 Find the coordinates of the turning point on the curve with equation $y=5 x^{2}-15 x+3$
You must show all your working.

$$
\begin{aligned}
& 5\left[x^{2}-3 x\right]+3 \\
= & 5\left[(x-3 / 2)^{2}-9 / 4\right]+3 \\
= & 5(x-3 / 2)^{2}-45 / 4+3 \\
= & 5(x-3 / 2)^{2}-45 / 4+12 / 4 \\
= & 5(x-3 / 2)^{2}-\frac{34}{4}
\end{aligned}
$$

(Total for Question 13 is 5 marks)

