Equation of a Tangent

REVISE THIS
TOPIC

1 A circle has equation $x^{2}+y^{2}=20$
The point P lies on the circle.
The coordinates of P are $(2,4)$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{aligned}
& \text { gradient of } O P=\frac{4}{2} \quad \begin{aligned}
& \begin{array}{l}
\text { gradient of } \\
\text { tangent }=-\frac{1}{2}
\end{array} \\
y & =-\frac{1}{2} x+c \\
4 & =-\frac{1}{2}(2)+c \\
4 & =-1+c \\
c & =5
\end{aligned}
\end{aligned}
$$

2 A circle has equation $x^{2}+y^{2}=90$
The point P lies on the circle.
The coordinates of P are $(9,3)$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{aligned}
\text { gradient of OP} & =\frac{3}{9} \quad \begin{array}{l}
\text { gradient of } \\
\text { tangent }=-3
\end{array} \\
& =-3 x+c \\
y & =-3(9)+c \\
3 & =-3(9)+c \\
3 & =-27 \\
c & =30
\end{aligned}
$$

3 A circle has equation $x^{2}+y^{2}=29$
The point P lies on the circle.
The coordinates of P are $(2,5)$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\text { gradient of } O P=\frac{5}{2}
$$

$$
y=-\frac{2}{5} x+c
$$

$5=-\frac{2}{5}(2)+c$
$5=-\frac{4}{5}+c$

$$
c=5+\frac{4}{5}
$$

$$
C=\frac{25}{5}+\frac{4}{5}
$$

$$
c=\frac{29}{5}
$$

4 A circle has equation $x^{2}+y^{2}=17$
The point P lies on the circle.
The coordinates of P are (1, -4)
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{aligned}
& \text { gradient of OP } \\
& y=\frac{1}{4} x+c \\
& -4=\frac{1}{4}(1)+c \\
& -4=\frac{1}{4}+c \\
& c=-\frac{1}{4}-\frac{1}{4} \\
& c=-\frac{16}{4}-\frac{1}{4} \\
& c=-\frac{17}{4}
\end{aligned}
$$

5 A circle has equation $x^{2}+y^{2}=34$
The point P lies on the circle.
The coordinates of P are $(-3,5)$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{aligned}
& \text { gradient of OP }=-\frac{5}{3} \quad \begin{array}{c}
\text { gradient of } \\
\text { tangent }=
\end{array} \frac{3}{5} \\
& y=\frac{3}{5} x+c \\
& 5=\frac{3}{5}(-3)+c \\
& 5=-\frac{9}{5}+c \\
& c=5+\frac{9}{5} \\
& c=\frac{25}{5}+\frac{9}{5} \\
& c=\frac{34}{5}
\end{aligned}
$$

6 A circle has equation $x^{2}+y^{2}=65$
The point P lies on the circle.
The coordinates of P are $(7, k)$, where $k<0$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{aligned}
7^{2}+k^{2} & =65 \\
49+k^{2} & =65 \\
k^{2} & =16 \\
k & = \pm 4
\end{aligned}
$$

gradient of OP $=-\frac{4}{7}$ gradient of tangent $=7 / 4$ as $k<0, k=4$

$$
\begin{aligned}
y & =\frac{7}{4} x+c \\
-4 & =\frac{7}{4}(7)+C \\
-4 & =\frac{49}{4}+c \\
c & =-4-\frac{49}{4} \\
c & =\frac{-16}{4}-\frac{49}{4} \\
c & =-\frac{65}{4}
\end{aligned}
$$

7 A circle has equation $x^{2}+y^{2}=117$
The point P lies on the circle.
The coordinates of P are $(9, k)$, where $k>0$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $y=m x+c$

$$
\begin{array}{rr}
q^{2}+k^{2}=117 \\
81+k^{2}=117 \\
k^{2}=36 \\
k= \pm 6 & \text { gradient of } O P=\frac{6}{9} \\
=\frac{2}{3} \\
\text { as } k>0, k=6 \\
& y=-\frac{3}{2} x+c \\
6 & =-\frac{3}{2}(9)+c \\
6 & =\frac{-27}{2}+c \\
c & =6+\frac{27}{2} \\
c & =\frac{12}{2}+\frac{27}{2} \\
c & =\frac{39}{2}
\end{array}
$$

8 A circle has equation $x^{2}+y^{2}=22.25$
The point P lies on the circle.
The coordinates of P are $(-4, k)$, where $k<0$
The line \mathbf{L} is tangent to the circle at point P.
Find an equation of \mathbf{L}.
Give your answer in the form $a y+b x+c=0$ where a, b and c are integers.

$$
\begin{aligned}
(-4)^{2}+k^{2} & =22.25 \\
16+k^{2} & =22.25 \\
k^{2} & =6.25 \\
k & = \pm 2.5 \\
\text { as } k<0 & =k=-2.5
\end{aligned}
$$

$$
\begin{aligned}
y & =-\frac{8}{5} x+c \\
-\frac{5}{2} & =-\frac{8}{5}(-4)+c \\
-\frac{5}{2} & =\frac{32}{5}+c \\
c & =-\frac{5}{2}-\frac{32}{5} \\
c & =-\frac{25}{10}-\frac{64}{10} \\
c & =-\frac{89}{10}
\end{aligned}
$$

$$
\begin{aligned}
\text { gradient of OP } & =\frac{-2.5}{-4} \\
& =\frac{2.5}{4} \\
& =\frac{5}{8} \\
\text { gradient of tangent } & =-\frac{8}{5}
\end{aligned}
$$

$$
\times 10\left(_{\downarrow \times 10} y=-\frac{8}{5} x-\frac{89}{10}\right.
$$

$$
10 y=-16 x-89
$$

$$
10 y+16 x+89=0
$$

$$
10 y+16 x+89=0
$$

9 A circle has equation $x^{2}+y^{2}=13$
The point P lies on the circle.
The coordinates of P are $(2,3)$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the x-axis at the point Q.
Work out the coordinates of the point Q.

$$
\begin{aligned}
& \text { gradient of } \\
& y=-\frac{2}{3} x+c \\
& 3=-\frac{2}{3}(2)+c \\
& 3=-\frac{4}{3}+c \\
& c=3+\frac{4}{3} \\
& c=\frac{9}{3}+4 / 3 \\
& c=\frac{13}{3}
\end{aligned}
$$

$$
\begin{gathered}
\frac{3}{2} \quad \begin{array}{c}
\text { gradient of } \\
\text { tangent }
\end{array} \\
y=-\frac{2}{3} \\
y=-\frac{2}{3} x+\frac{13}{3} \\
\text { At } Q, y=0 \\
0=-\frac{2}{3} x+\frac{13}{3} \\
\frac{2}{3} x=\frac{13}{3} \\
2 x=13 \\
x=\frac{13}{2} \\
x=6.5
\end{gathered}
$$

10 A circle has equation $x^{2}+y^{2}=212$
The point P lies on the circle.
The coordinates of P are (14, -4)
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the y-axis at the point A.
Work out the coordinates of the point A.

$$
\begin{array}{ll}
\text { gradient of } O P=-\frac{4}{14} \quad \text { gradient of } \\
& =-\frac{2}{7} \quad \text { tangent }=\frac{7}{2} \\
y=\frac{7}{2} x+c \\
-4=\frac{7}{2}(14)+C & y=\frac{7}{2} x-53 \\
-4=49+C & \text { At } A, x=0 \\
c=-4-49 & y=\frac{7}{2}(0)-53 \\
c=-53 & \begin{array}{ll}
& y=-53
\end{array}
\end{array}
$$

11 A circle has equation $x^{2}+y^{2}=90$
The point P lies on the circle.
The coordinates of P are $(3,9)$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the y-axis at the point A and the x-axis at the point B.
Work out the area of triangle $A O B$.

$$
\begin{array}{rlrl}
\text { gradient of OP }=\frac{9}{3} & & \text { gradient of } \\
& =3 & \begin{aligned}
\text { tangent }=-\frac{1}{3}
\end{aligned} \\
& & \\
y=-\frac{1}{3} x+c & \text { At } B, y=0 \\
9=-\frac{1}{3}(3)+C & & \\
9 & =-1+C & 0 & =-\frac{1}{3} x+10 \\
c & =10 & 3 & =10 \\
y & =-\frac{1}{3} x+10 & x & =30 \\
\text { At } A, x=0 & B & =(30,0) \\
y=-\frac{1}{3}(0)+10 & \text { Area } & =\frac{1}{2} \times 30 \times 10 \\
y=10 & & =150
\end{array}
$$

12 A circle has equation $x^{2}+y^{2}=320$
The point P lies on the circle.
The coordinates of P are $(-8,16)$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the x-axis at the point A and the y-axis at the point B.
Work out the length of $A B$.
Give your answer in the form $a \sqrt{5}$ where a is an integer.

$$
\begin{aligned}
& \text { gradient of } O P= \\
& y=\frac{1}{2} x+C \\
& 16=\frac{1}{2}(-8)+C \\
& 16=-4+C \\
& c=16+4 \\
& c=20 \\
& y=\frac{1}{2} x+20
\end{aligned}
$$

At $A, y=0$

$$
\begin{aligned}
0 & =\frac{1}{2} x+20 \\
-\frac{1}{2} x & =20 \\
x & =-40 \\
A & =(-40,0)
\end{aligned}
$$

At $B, x=0$

$$
\begin{aligned}
& y=\frac{1}{2}(0)+20 \\
& y=20 \\
& B=(0,20)
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}=2000 \\
& c=\sqrt{2000} \\
& c=\sqrt{400} \times \sqrt{5}
\end{aligned}
$$

$$
c^{2}=20^{2}+40^{2}
$$ units (Total for Question 12 is 6 marks)

13 A circle has equation $x^{2}+y^{2}=29$
The point P lies on the circle.
The coordinates of P are $(5,2)$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the y-axis at the point A and the x-axis at the point B.
Work out the length of $A B$.
Give your answer to 4 significant figures.
gradient of $O P=\frac{2}{5}$
gradient of tangent $=-\frac{5}{2}$

$$
\begin{aligned}
& y=-\frac{5}{2} x+C \\
& 2=-\frac{5}{2}(5)+C \\
& 2=-\frac{25}{2}+c \\
& c=2+\frac{25}{2} \\
& c=\frac{4}{2}+\frac{25}{2} \\
& c=\frac{29}{2} \\
& y=-\frac{5}{2} x+\frac{29}{2} \\
& \text { At } A, x=0 \\
& y=-\frac{5}{2}(0)+\frac{29}{2} \\
& A=\left(0, \frac{29}{2}\right)
\end{aligned}
$$

$$
\frac{29}{2} \int_{0}^{A} C C_{\frac{25}{2}}^{C} C^{2}=\left(\frac{29}{2}\right)^{2}+\left(\frac{29}{5}\right)^{2}
$$

$$
c^{2}=243.89
$$

$$
c=\sqrt{243.89}
$$

At B, $y=0$

$$
\begin{aligned}
0 & =-\frac{5}{2} x+\frac{29}{2} \\
\frac{5}{2} x & =\frac{29}{2} \\
x & =\frac{29}{5} \quad B=\left(\frac{29}{5}, 0\right)
\end{aligned}
$$

$$
c=15 \cdot 669 \ldots
$$

14 A circle has equation $x^{2}+y^{2}=48$
The point P lies on the circle.
The coordinates of P are $(\sqrt{12}, 6)$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the y-axis at the point A.
Show that the length of $A P$ is an integer.

$$
\text { gradient of } O P=\frac{6}{\sqrt{12}}
$$

$$
\begin{aligned}
& y=-\frac{\sqrt{12}}{6} x+c \\
& 6=-\frac{\sqrt{12}}{6}(\sqrt{12})+c \\
& 6=-\frac{12}{6}+c \\
& 6=-2+c \\
& c=8 \\
& y=\frac{\sqrt{12}}{6} x+8
\end{aligned}
$$

At $A, x=0$
$y=\frac{\sqrt{12}}{6}(0)+8$
gradient of
tangent $=-\frac{\sqrt{12}}{6}$

$$
A P^{2}=2^{2}+(\sqrt{12})^{2}
$$

$$
A P^{2}=4+12
$$

$A P^{2}=16$
$A P=\sqrt{16}$
$A P=4$

$$
A P=4
$$

4 is an integer
$A P^{2}=2^{2}+(\sqrt{12})^{2}$
$A P^{2}=4+12$

15 A circle has equation $x^{2}+y^{2}=25$
The point P lies on the circle.
The coordinates of P are $(\sqrt{5}, \sqrt{20})$
The line \mathbf{L} is tangent to the circle at point P.
The line \mathbf{L} crosses the x-axis at the point A.
Work out the area of triangle $A O P$.

$$
\begin{aligned}
& \text { gradient of } O P=\frac{\sqrt{20}}{\sqrt{5}} \\
& =\sqrt{4} \\
& =2 \\
& y=-\frac{1}{2} x+c \\
& \text { At } A, y=0 \\
& \sqrt{20}=-\frac{1}{2}(\sqrt{5})+c \\
& C=\sqrt{20}+\frac{\sqrt{5}}{2} \\
& c=2 \sqrt{5}+\frac{\sqrt{5}}{2} \\
& \begin{array}{l}
c=\frac{5 \sqrt{5}}{2} \\
y=-\frac{1}{2} x+\frac{5 \sqrt{5}}{2}
\end{array} \\
& 0=-\frac{1}{2} x+\frac{5 \sqrt{5}}{2} \\
& \frac{1}{2} x=\frac{5 \sqrt{5}}{2} \\
& x=5 \sqrt{5} \\
& A=(5 \sqrt{5}, 0) \\
& \text { Area }=\frac{1}{2} \times 5 \sqrt{5} \times \sqrt{20} \\
& =\frac{1}{2} \times 5 \sqrt{100} \\
& =\frac{1}{2} \times 5 \times 10 \\
& =\frac{1}{2} \times 50
\end{aligned}
$$

