The Cosine Rule

TOPIC
1 Here is triangle $A B C$.

Work out the length of $A B$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
& x^{2}=14^{2}+8^{2}-2 \times 14 \times 8 \times \cos (92) \\
& x^{2}=267.8174873 \\
& x=\sqrt{267.8174873}
\end{aligned}
$$

2 Here is triangle $A B C$.

Work out the length of $B C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
& x^{2}=6 \cdot 2^{2}+6^{2}-2 \times 6.2 \times 6 \times \cos (54) \\
& x^{2}=30.70877723 \\
& x=\sqrt{30.70877723}
\end{aligned}
$$

3 Here is triangle $A B C$.

Work out the size of angle $B A C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\cos (x) & =\frac{20^{2}+19^{2}-13^{2}}{2 \times 20 \times 19} \\
\cos (x) & =0.7789473684 \\
x & =\cos ^{-1}(0.7789473684)
\end{aligned}
$$

(Total for Question 3 is $\mathbf{3}$ marks)
4 Here is triangle $A B C$.

Work out the size of angle $A B C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\cos (x) & =\frac{25^{2}+17^{2}-20^{2}}{2 \times 25 \times 17} \\
\cos (x) & =0.6047058824 \\
x & =\cos ^{-1}(0.6047058824)
\end{aligned}
$$

@1stclassmaths

5 Here is triangle $A B C$.

Work out the length of $A C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
& x^{2}=4.8^{2}+13.3^{2}-2 \times 4.8 \times 13.3 \times \cos (37) \\
& x^{2}=97.96021808 \\
& x=\sqrt{97.96021808}
\end{aligned}
$$

6 Here is triangle $A B C$.

Work out the size of angle $B C A$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\cos (x) & =\frac{10^{2}+14^{2}-13^{2}}{2 \times 10 \times 14} \\
\cos (x) & =0.4535714286 \\
x & =\cos ^{-1}(0.4535714286)
\end{aligned}
$$

7 Here is triangle $A B C$.

Work out the size of angle $A B C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\cos (x) & =\frac{3^{2}+9^{2}-10^{2}}{2 \times 3 \times 9} \\
\cos (x) & =-0.185185185 \ldots \\
x & =\cos ^{-1}(-0.185185185 \ldots)
\end{aligned}
$$

8 Here is triangle $A B C$.

Work out the length of $B C$.
Give your answer in the form \sqrt{k}, where k is an integer.

$$
\begin{aligned}
& x^{2}=(\sqrt{6})^{2}+(4 \sqrt{2})^{2}-2 \times \sqrt{6} \times 4 \sqrt{2} \times \cos (30) \\
& x^{2}=6+32-8 \sqrt{12} \times \frac{\sqrt{3}}{2} \\
& x^{2}=38-4 \sqrt{36} \\
& x^{2}=38-24 \quad x^{2}=14 \\
& x
\end{aligned}
$$

D は @ @1stclassmaths

$9 A B C O$ is a sector with centre O.

D is the point on $O C$ so that $O D: D C=5: 3$
$A O=24 \mathrm{~cm}$
$A D=36 \mathrm{~cm}$
Work out the area of the sector.
Give your answer to 1 decimal place.

$$
\begin{aligned}
& O C=24 \\
& 24 \div(5+3)=3 \\
& 5 \times 3=15(O D) \\
& 3 \times 3=9(D C)
\end{aligned}
$$

$$
\cos (x)=\frac{24^{2}+15^{2}-36^{2}}{2 \times 24 \times 15}
$$

$$
\cos (x)=-0.6875
$$

$$
\text { Area }=\frac{133.4 \ldots}{360} \times \pi \times 24^{2}
$$

$$
x=\cos ^{-1}(-0.6875)
$$

$$
x=133.4325366
$$

$10 A B C D$ is a trapezium with $A B$ parallel to $C D$.

Work out the length of line $A D$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\cos (x) & =\frac{15^{2}+20^{2}-14^{2}}{2 \times 15 \times 20} \\
\cos (x) & =0.715 \\
x & =\cos ^{-1}(0.715) \\
x & =44.35680084
\end{aligned}
$$

Angle $B D C=$ Angle $A B D$ as they are alternate angles

$$
\begin{aligned}
& y^{2}=7^{2}+15^{2}-2 \times 7 \times 15 \times \cos (44.3 \ldots) \\
& y^{2}=123.85 \\
& y=\sqrt{123.85} \\
& y=11.12879149
\end{aligned}
$$

11 Boat A and Boat B both leave the Port P at 12 pm .
Boat A travels on a bearing of 112° and travels at a constant speed of 16 mph . Boat B travels on a bearing of 220° and travels at a constant speed of 14 mph .

At 2:30 pm, what is the direct distance between the two boats.

$$
\begin{aligned}
& 220-112=108^{\circ} \\
& 16 \times 2 \cdot 5=40 \text { miles } \\
& 14 \times 2 \cdot 5=35 \text { miles } \\
& x^{2}=40^{2}+35^{2}-2 \times 40 \times 35 \times \cos (108) \\
& x^{2}=3690.247584 \\
& x=\sqrt{3690.247584}
\end{aligned}
$$

