Similar Areas/Volumes

,
 REVISE THIS TOPIC

8 cm

The area of quadrilateral \mathbf{A} is $32 \mathrm{~cm}^{2}$
Work out the area of quadrilateral B.

\downarrow d

2 Prisms \mathbf{A} and \mathbf{B} are similar.

2.6 cm

The volume of prism \mathbf{A} is $7 \mathrm{~cm}^{3}$
Work out the volume of prism \mathbf{B}.

3 Solids \mathbf{P} and \mathbf{Q} are similar.
\mathbf{P} has a height of 10 cm and \mathbf{Q} has a height of 8 cm .
The volume of \mathbf{P} is $800 \mathrm{~cm}^{3}$
Work out the volume of \mathbf{Q}.

\downarrow 이 @1stclassmaths

4 Solids \mathbf{M} and \mathbf{N} are similar.
Height of $\mathbf{M}:$ Height of $\mathbf{N}=2: 3$
The surface area of \mathbf{N} is $360 \mathrm{~cm}^{2}$
Work out the surface area of \mathbf{M}.

5 Solids \mathbf{X} and \mathbf{Y} are similar.
\mathbf{X} has a volume of $24 \mathrm{~cm}^{3}$ and \mathbf{Y} has a volume of $81000 \mathrm{~cm}^{3}$.
The height of \mathbf{X} is 4 cm

Work out the height of \mathbf{Y}.

- お(0) @1stclassmaths

6 Here is some information about similar solids \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Height	6 cm	15 cm	
Volume	$240 \mathrm{~cm}^{3}$		$6480 \mathrm{~cm}^{3}$

(a) Complete the table
(b) Work out
surface area of \mathbf{X} : surface area of \mathbf{Y} : surface area of \mathbf{Z}
Give your answer in its simplest form.

7 Here are triangle prisms A and B.

Surface area $=960 \mathrm{~cm}^{2}$

Surface area $=1500 \mathrm{~cm}^{2}$

Show that prisms A and \mathbf{B} are not similar.

8 Solids \mathbf{G} and \mathbf{H} are similar.
\mathbf{G} has a surface area of $3430 \mathrm{~cm}^{2}$ and \mathbf{H} has a surface area of $280 \mathrm{~cm}^{2}$. The height of \mathbf{G} is 84 cm

Work out the height of \mathbf{H}.

- $\mathrm{y}^{\mathbf{\gamma}}$ @ $@ 1$ stclassmaths

9 Solids \mathbf{C} and \mathbf{D} are similar.
C has a volume of $40 \mathrm{~cm}^{3}$ and \mathbf{D} has a volume of $1080 \mathrm{~cm}^{3}$.
The surface area of \mathbf{C} is $100 \mathrm{~cm}^{2}$
Work out the surface area of \mathbf{D}.

10 Solids \mathbf{U} and \mathbf{V} are similar.
\mathbf{U} has a surface area of $375 \mathrm{~cm}^{2}$ and \mathbf{V} has a surface area of $540 \mathrm{~cm}^{2}$.
The volume of \mathbf{V} is $432 \mathrm{~cm}^{3}$
Work out the volume of \mathbf{U}.

11 Solids \mathbf{M} and \mathbf{N} are similar.
volume of \mathbf{M} : volume of $\mathbf{N}=1000: 1$
The surface area of \mathbf{M} is $80 \mathrm{~cm}^{2}$
Work out the surface area of \mathbf{N}.

12 Solids A, B and C are similar.
surface area of Solid A: surface area of Solid $\mathbf{B}=4: 25$
volume of $\operatorname{Solid} \mathbf{A}$: volume of solid $\mathbf{C}=64: 729$
height of Solid A : height of $\operatorname{Solid} \mathbf{B}$: height of $\operatorname{Solid} \mathbf{C}=p: q: r$
where p, q and r are integers in their simplest form.
Work out the values of p, q and r.
$p=$ \qquad
$q=$ \qquad
$r=$ \qquad

- $\mathrm{d}^{\mathbf{j}}$ @1stclassmaths

13 Prisms A and \mathbf{B} are similar.
The cross sections are shaded.

Prism A

Prism B

The area of the cross section of prism \mathbf{A} is $32 \mathrm{~cm}^{2}$
The length of prism \mathbf{B} is 18 cm .
volume of prism \mathbf{A} : volume of prism $\mathbf{B}=8: 27$
Work out the volume of prism \mathbf{B}.

\downarrow 아 @1stclassmaths

14 Prisms A and \mathbf{B} are similar.
The cross sections are shaded.

Prism A

Prism B
Volume $=1536 \mathrm{~cm}^{3}$

Here is some information about the prisms.

	Length	Height	Cross Section Area	Volume
Prism A			$25 \mathrm{~cm}^{2}$	
Prism B	24 cm	4.8 cm		$1536 \mathrm{~cm}^{3}$

Work out the height of prism \mathbf{A}.

15 Solids \mathbf{X} and \mathbf{Y} are similar.
\mathbf{X} has a height of 14 cm and \mathbf{Y} has a height of 21 cm .
The volume of \mathbf{Y} is $950 \mathrm{~cm}^{3}$ greater than the volume of \mathbf{X}.

Work out the volume of Solid \mathbf{X}.

16 Solid \mathbf{S} is shown below.

Two of the faces of Solid \mathbf{S} are squares with areas of $36 \mathrm{~cm}^{2}$ and $225 \mathrm{~cm}^{2}$ Four of the faces of Solid \mathbf{S} are trapeziums.

The vertical height of $\operatorname{Solid} \mathbf{S}$ is 12 cm .
Solid \mathbf{T} is similar to Solid \mathbf{S}.
The area of one of the square faces of Solid \mathbf{T} is $100 \mathrm{~cm}^{2}$
Work out two possible values for the vertical height of Solid T.
\qquad

17 Solids \mathbf{X}, \mathbf{Y} and \mathbf{Z} are similar.
volume of \mathbf{X} : volume of $\mathbf{Y}=1: 8$
surface area of \mathbf{Y} : surface area of $\mathbf{Z}=9: 20$
height of \mathbf{X} : height of \mathbf{Y} : height of $\mathbf{Z}=a: b: c \sqrt{5}$
where a, b and c are integers.
Work out the values of a, b and c.

$$
\begin{aligned}
& a=. \\
& b=. \\
& c=.
\end{aligned}
$$

\qquad

