Similar Areas/Volumes

REVISE THIS
TOPIC

1 Quadrilaterals A and B are similar.

The area of quadrilateral \mathbf{A} is $32 \mathrm{~cm}^{2}$
Work out the area of quadrilateral B.
$A \rightarrow B$ Length scale factor $=16 \div 8$

$$
=2
$$

Area scale factor $=2^{2}$

$$
=4
$$

$32 \times 4=128$

Prisms \mathbf{A} and \mathbf{B} are similar.

The volume of prism \mathbf{A} is $7 \mathrm{~cm}^{3}$
Work out the volume of prism B.
Length scale factor $=7.8 \div 2.6$

$$
=3
$$

$$
\begin{array}{r}
\text { Volume scale factor }= \\
\\
=7 \times 27=189
\end{array}
$$

Answer
nd \mathbf{Q} are similar.
\mathbf{P} has a height of 10 cm and \mathbf{Q} has a height of 8 cm .
The volume of \mathbf{P} is $800 \mathrm{~cm}^{3}$
Work out the volume of \mathbf{Q}.
$P \rightarrow Q$ Length scale factor $=8 \div 10$

$$
=0.8
$$

Volume scale factor $=0.8^{3}$
$=0.512$
$800 \times 0.512=409.6$

Answer 409.6 cm^{3}

4 Solids \mathbf{M} and \mathbf{N} are similar.
Height of \mathbf{M} : Height of $\mathbf{N}=2: 3$
The surface area of \mathbf{N} is $360 \mathrm{~cm}^{2}$
Work out the surface area of \mathbf{M}.
$N \rightarrow M$

\qquad
\qquad
Answer \qquad cm^{2}
$5 \quad$ Solids \mathbf{X} and \mathbf{Y} are similar.
\mathbf{X} has a volume of $24 \mathrm{~cm}^{3}$ and \mathbf{Y} has a volume of $81000 \mathrm{~cm}^{3}$.
The height of \mathbf{X} is 4 cm

Work out the height of \mathbf{Y}.
$x \rightarrow 4$ Volume scale factor $=81000 \div 24$

$$
=3375
$$

Length scale factor $=\sqrt[3]{3375}$

$$
=15
$$

$4 \times 15=60$

Answer \qquad cm
$6 \quad$ Here is some information about similar solids \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
Height	6 cm	15 cm	18
Volume	$240 \mathrm{~cm}^{3}$	3750	$6480 \mathrm{~cm}^{3}$

6 (a) Complete the table.
$x \rightarrow 4$ Length scale factor $=15 \div 6$

$$
=2.5
$$

$$
\begin{aligned}
\text { Volume scale factor } & =2.5^{3} \\
& =15.625 \\
240 \times 15.625 & =3750 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
4 \rightarrow 2 \text { Volume scale factor } & =6480 \div 3750 \\
& =1.728 \\
\text { Length scale factor } & =\sqrt[3]{1.728} \\
& =1.2
\end{aligned}
$$

(b) Work out
surface area of \mathbf{X} : surface area of \mathbf{Y} : surface area of \mathbf{Z}
Give your answer in its simplest form.
Lengths $6: 15: 18=2: 5: 6$
Areas $2^{2}: 5^{2}: 6^{2}=4: 25: 36$

$$
\text { Answer } 4: 25: 36
$$

$7 \quad$ Here are triangle prisms \mathbf{A} and \mathbf{B}.

Surface area $=960 \mathrm{~cm}^{2}$

Surface area $=1500 \mathrm{~cm}^{2}$

Show that prisms \mathbf{A} and \mathbf{B} are not similar.
$A \rightarrow B$ Length scale fatter $=20 \div 15$

$$
=1 \cdot 3
$$

Area scale factor $=1500 \div 960$

$$
=1.5625
$$

$$
\sqrt{1.5625}=1.25
$$

$1.25 \neq 1.3$
8 Solids \mathbf{G} and \mathbf{H} are similar.
\mathbf{G} has a surface area of $3430 \mathrm{~cm}^{2}$ and \mathbf{H} has a surface area of $280 \mathrm{~cm}^{2}$.
The height of \mathbf{G} is 84 cm
Work out the height of \mathbf{H}.
$G \rightarrow H$ Area scale factor $=280 \div 3430$

$$
=\frac{4}{49}
$$

Length scale factor $=\sqrt{\frac{4}{49}}$

$$
84 \times 2 / 7=24
$$

Answer 24 cm
$9 \quad$ Solids \mathbf{C} and \mathbf{D} are similar.
C has a volume of $40 \mathrm{~cm}^{3}$ and \mathbf{D} has a volume of $1080 \mathrm{~cm}^{3}$.
The surface area of \mathbf{C} is $100 \mathrm{~cm}^{2}$

Work out the surface area of \mathbf{D}.
$C \rightarrow D$.
Volume scale factor $=1080 \div 40$

$$
=27
$$

Length scale feutor $=\sqrt[3]{27}=3$ Area scale factor $=3^{2}=9$

$$
100 \times 9=900
$$

Answer \qquad cm^{2}
$10 \quad$ Solids \mathbf{U} and \mathbf{V} are similar.
\mathbf{U} has a surface area of $375 \mathrm{~cm}^{2}$ and \mathbf{V} has a surface area of $540 \mathrm{~cm}^{2}$. The volume of \mathbf{V} is $432 \mathrm{~cm}^{3}$

Work out the volume of \mathbf{U}.
$V \rightarrow U$
$\begin{aligned} \text { Area scale factor } & =375 \div 540 \\ & =\frac{25}{36}\end{aligned}$

$$
=\frac{25}{36}
$$

Length scale factor $=\sqrt{\frac{25}{36}}=\frac{5}{6}$
Volume scale factor $=\left(\frac{5}{6}\right)^{3}=\frac{125}{216}$ $432 \times \frac{125}{216}=250$
Answer $\quad 250$ cm^{3}
$11 \quad$ Solids \mathbf{M} and \mathbf{N} are similar.
volume of \mathbf{M} : volume of $\mathbf{N}=1000: 1$
The surface area of \mathbf{M} is $80 \mathrm{~cm}^{2}$
Work out the surface area of \mathbf{N}.
\qquad

Answer \qquad cm^{2}

12 Solids A, B and C are similar.
surface area of Solid \mathbf{A} : surface area of Solid $\mathbf{B}=4: 25$
volume of Solid \mathbf{A} : volume of solid $\mathbf{C}=64: 729$
height of Solid \mathbf{A} : height of Solid \mathbf{B} : height of Solid $\mathbf{C}=p: q: r$
where p, q and r are integers in their simplest form.
Work out the values of p, q and r.

13 Prisms \mathbf{A} and \mathbf{B} are similar.
The cross sections are shaded.

Prism A

Prism B

The area of the cross section of prism \mathbf{A} is $32 \mathrm{~cm}^{2}$
The length of prism \mathbf{B} is 18 cm .
volume of prism \mathbf{A} : volume of prism $\mathbf{B}=8: 27$
Work out the volume of prism \mathbf{B}.
$A: B$
Volume 8:27
length 2:3
Area ${ }^{6} 6_{32: 72} 4: 9$
Cross section of $B=72 \mathrm{~cm}^{2}$
Volume of prism $=$ area of cross section x length $=72 \times 18$

Answer 1296 cm^{3}
$14 \quad$ Prisms \mathbf{A} and \mathbf{B} are similar.
The cross sections are shaded.

Prism A

Prism B
Volume $=1536 \mathrm{~cm}^{3}$

Here is some information about the prisms.

	Length	Height	Cross Section Area	Volume
Prism A			$25 \mathrm{~cm}^{2}$	
Prism B	24 cm	4.8 cm		$1536 \mathrm{~cm}^{3}$

Work out the height of prism \mathbf{A}.

Area of cross section of $B=1536 \div 24$ $=64 \mathrm{~cm}^{2}$
$B \rightarrow A$ Area scale factor $=\frac{25}{64}$ Length scale factor
$4.8 \times \frac{5}{8}=3$

15 Solids \mathbf{X} and \mathbf{Y} are similar.
\mathbf{X} has a height of 14 cm and \mathbf{Y} has a height of 21 cm .
The volume of \mathbf{Y} is $950 \mathrm{~cm}^{3}$ greater than the volume of \mathbf{X}.
Work out the volume of Solid \mathbf{X}.
Volume of $X=x$
Volume of $Y=x+950$

$$
\begin{aligned}
4 \rightarrow x \quad \text { Length scale factor } & =14 \div 21 \\
& =2 / 3 \\
\text { Volume scale factor } & =\left(\frac{2}{3}\right)^{3} \\
& =8 / 27
\end{aligned}
$$

also volume scale factor $=\frac{x}{x+950}$

$$
\begin{aligned}
\frac{x}{x+950} & =\frac{8}{27} \\
27 x & =8(x+950) \\
27 x & =8 x+7600 \\
19 x & =7600 \\
x & =7600 \div 19
\end{aligned}
$$

Answer \qquad cm^{3}

Solid \mathbf{S} is shown below.

Two of the faces of Solid \mathbf{S} are squares with areas of $36 \mathrm{~cm}^{2}$ and $225 \mathrm{~cm}^{2}$. Four of the faces of Solid \mathbf{S} are trapeziums.

The vertical height of Solid \mathbf{S} is 12 cm .
Solid \mathbf{T} is similar to Solid \mathbf{S}.
The area of one of the square faces of Solid \mathbf{T} is $100 \mathrm{~cm}^{2}$
Work out two possible values for the vertical height of Solid T.
[4 marks]

\qquad

$$
12 \times \frac{10}{15}=8 \mathrm{~cm}
$$

\qquad
\qquad
mneme 20
\qquad cm and \qquad cm
$17 \quad$ Solids \mathbf{X}, \mathbf{Y} and \mathbf{Z} are similar.
volume of \mathbf{X} : volume of $\mathbf{Y}=1: 8$
surface area of \mathbf{Y} : surface area of $\mathbf{Z}=9: 20$
height of \mathbf{X} : height of \mathbf{Y} : height of $\mathbf{Z}=a: b: c \sqrt{5}$
where a, b and c are integers.
Work out the values of a, b and c.

$$
\begin{array}{rl}
x: 4 & 4: 2 \\
\text { Volume } 1: 8 & \text { Area } 9: 20 \\
\text { Length } 1: 2 & \text { length } 3: \sqrt{20} \\
\begin{aligned}
x: 4 & =1: 2
\end{aligned} \quad \begin{aligned}
& 4: 2=3: \sqrt{20} \\
&=3: 6
\end{aligned} \\
\begin{aligned}
x: 4: 2 & =3: 6: 2 \sqrt{20} \\
& =3: 6: 2 \times \sqrt{4} \times \sqrt{5} \\
& =3: 6: 4 \sqrt{5}
\end{aligned} \\
& =3 \quad b=6 \quad c=4
\end{array}
$$

