Perpendicular Lines

1 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=5 x+1$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $5 y+x=20$
Show that these two lines are perpendicular.

$$
\begin{array}{lrl}
y=5 x+1 & 5 y+x & =20 \\
\text { gradient }=5 & 5 y & =20-x \\
y & =4-\frac{1}{5} x \\
& \text { gradient } & =-\frac{1}{5}
\end{array}
$$

$5 x-\frac{1}{5}=-1$ therefore L_{1} and L_{2} are perpendicular

2 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=8-3 x$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $9 y-3 x-6=0$
Show that these two lines are parallel.

$$
\begin{aligned}
& y=8-3 x \\
& \text { gradient }=-3
\end{aligned}
$$

$$
\begin{aligned}
9 y-3 x & =6 \\
9 y & =6+3 x \\
y & =\frac{6}{9}+\frac{3}{9} x \\
\text { gradient } & =\frac{1}{3}
\end{aligned}
$$

$-3 x \frac{1}{3}=-1$ therefore L_{1} and L_{2} are perpendicular

3 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $2 y=x+10$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $4 y+8 x=16$
Show that these two lines are perpendicular.

$$
\begin{aligned}
2 y & =x+10 \\
y & =\frac{1}{2} x+5 \\
\text { gradient } & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
4 y+8 x & =16 \\
4 y & =16-8 x \\
y & =4-2 x
\end{aligned}
$$

$$
\text { gradient }=-2
$$

$\frac{1}{2} x-2=-1$ therefore L_{1} and L_{2} are perpendicular
(Total for Question 3 is 2 marks)
4 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=\frac{3}{4} x+1$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $6 y+8 x=30$
Show that these two lines are perpendicular.

$$
\begin{aligned}
& y=\frac{3}{4} x+1 \\
& \text { gradient }=\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
6 y+8 x & =30 \\
6 y & =30-8 x \\
y & =5-\frac{8}{6} x \\
\text { gradient } & =-\frac{4}{3}
\end{aligned}
$$

$\frac{3}{4} x-\frac{4}{3}=-1$ there efore L_{1} and L_{2} are perpendicular
5 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $2 y=3 x-4$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $8 y-12 x-40=0$
Show that these two lines are not perpendicular.

$$
\begin{gathered}
2 y=3 x-6 \\
y=\frac{3}{2} x-3 \\
\text { gradient }=3 / 2
\end{gathered}
$$

$$
\begin{aligned}
8 y-12 x & =40 \\
8 y & =40+12 x \\
y & =5+\frac{12}{8} x \\
\text { gradient } & =\frac{3}{2}
\end{aligned}
$$

Both gradients are the same so L_{1} and L_{2} are parallel not perpendicular
(Total for Question 5 is 2 marks)

6 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=k x+4$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $2 y+4 x=10$
Lines $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ are perpendicular.
Work out the value of k.

$$
\begin{array}{r}
y=k x+4 \quad 2 y+4 x=10 \\
\text { gradient }=k \\
2 y=10-4 x \\
y=5-2 x
\end{array} \quad k=\frac{-1}{-2}
$$

$$
\text { gradient }=-2
$$

$$
k=\quad 1 / 2
$$

(Total for Question 6 is 2 marks)
7 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $2 y=k x-2$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $3 y+x=18$
Lines $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ are perpendicular.
Work out the value of k.

$$
2 y=k x-2 \quad 3 y+x=18
$$

$$
y=\frac{12}{2} x-1
$$

$$
3 y=18-x
$$

$$
\text { gradient }=\frac{k}{2} \quad y=18-\frac{1}{3} x
$$

$$
\text { gradient }=-\frac{1}{3}
$$

$$
\begin{aligned}
& \frac{k}{2} \times-\frac{1}{3}=-1 \\
& \frac{-k}{6}=-1 \\
&-k=-6 \\
& k=6 \\
& 6
\end{aligned}
$$

8 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=3-\frac{2}{5} x$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $k y-6 x-20=0$
Lines $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ are perpendicular.
Work out the value of k.

$$
-\frac{2}{5} \times \frac{6}{R}=-1
$$

$$
\begin{array}{lr}
y=3-\frac{2}{5} x \quad & k y=6 x+20 \\
\text { gradient }=-\frac{2}{5} \quad y=\frac{6}{k} x+\frac{20}{k} \\
& \text { gradient }=\frac{6}{k}
\end{array}
$$

$$
\frac{-12}{5 k}=-1
$$

$$
-12=-5 k
$$

$$
k=
$$

9 The straight line \mathbf{L} has the equation $y=3 x+1$
The point A has coordinates $(9,4)$
Find an equation of the straight line that is perpendicular to \mathbf{L} and passes through A.

$$
\begin{aligned}
& \text { gradient of } L_{1}=3 \\
& \text { gradient of } L_{2}=-1 / 3 \\
& y=-\frac{1}{3} x+c \\
& 4=-\frac{1}{3}(9)+c \\
& 4=-3+c \\
& c=7
\end{aligned}
$$

$$
y=-\frac{1}{3} x+7
$$

(Total for Question 9 is $\mathbf{3}$ marks)
10 The straight line \mathbf{L} has the equation $y=5-4 x$
The point A has coordinates $(4,12)$
Find an equation of the straight line that is perpendicular to \mathbf{L} and passes through A.

$$
\begin{aligned}
& \text { gradient of } L_{1}=-4 \\
& \text { gradient of } L_{2}=\frac{1}{4} \\
& y=\frac{1}{4} x+c \\
& 12=\frac{1}{4}(4)+c \\
& 12=1+c \\
& c=11
\end{aligned}
$$

11 The straight line \mathbf{L} has the equation $y=\frac{1}{2} x+3$
The point A has coordinates $(-3,7)$
Find an equation of the straight line that is perpendicular to \mathbf{L} and passes through A.

$$
\begin{aligned}
& \text { gradient of } L_{1}=\frac{1}{2} \\
& \text { gradient of } L_{2}=-2 \\
& y=-2 x+c \\
& 7=-2(-3)+c \\
& 7=6+c \\
& c=1
\end{aligned}
$$

$$
y=-2 x+1
$$

(Total for Question 11 is 3 marks)
12 The straight line \mathbf{L} has the equation $y=2-\frac{1}{6} x$
The point A has coordinates $(2,7)$
Find an equation of the straight line that is perpendicular to \mathbf{L} and passes through A.

$$
\begin{aligned}
& \text { gradient of } L_{1}=-\frac{1}{6} \\
& \text { gradient of } L_{2}=6 \\
& y=6 x+c \\
& 7=6(2)+c \\
& 7=12+c \\
& c=-5
\end{aligned}
$$

$13 A=(2,6)$
$B=(1,9)$
$C=(15,2)$
Find an equation of the straight line that is perpendicular to $A B$ and passes through C.

$$
\text { gradient of } \begin{aligned}
A B & =\frac{9-6}{1-2} \\
& =\frac{3}{-1} \\
& =-3
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{3} x+c \\
& 2=\frac{1}{3}(15)+c
\end{aligned}
$$

$$
2=5+c
$$

$$
c=-3
$$

$$
y=\frac{1}{3} x-3
$$

$$
C=(6,6)
$$

Find an equation of the straight line that is perpendicular to $A B$ and passes through C.

$$
\begin{aligned}
\text { gradient of } A B & =\frac{8-6}{3-0} \\
& =\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& y=-\frac{3}{2} x+c \\
& 6=-\frac{3}{2}(6)+c \\
& 6=-9+c \\
& c=15
\end{aligned}
$$

$15 A=(5,-3)$
$B=(3,5)$
$C=(-5,2)$
Find an equation of the straight line that is perpendicular to $A B$ and passes through C.

$$
\begin{aligned}
\text { gradient of } A B & =\frac{5-(-3)}{3-5} \\
& =\frac{8}{-2} \\
& =-4
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{4} x+c \\
& 2=\frac{1}{4}(-5)+c \\
& 2=-\frac{5}{4}+c \\
& c=2+\frac{5}{4} \\
& c=\frac{8}{4}+\frac{5}{4} \\
& c=\frac{13}{4}
\end{aligned}
$$

$$
y=\frac{1}{4} x+\frac{13}{4}
$$

(Total for Question 15 is 4 marks)
$16 A=(-4,5)$
$B=(6,1)$
$C=(-8,-9)$
Find an equation of the straight line that is perpendicular to $A B$ and passes through C.

$$
\begin{aligned}
\text { gradient of } A B & =\frac{1-5}{6-(-4)} & y & =\frac{5}{2} x+c \\
& =\frac{-4}{10} & -9 & =\frac{5}{2}(-8)+c \\
& =-\frac{2}{5} & & =-20+c \\
& & & \\
& & & =\frac{5}{2} x+11
\end{aligned}
$$

17 The straight line $\mathbf{L}_{\mathbf{1}}$ has the equation $y=3-2 x$
The point A has coordinates $(6,2)$
Line $\mathbf{L}_{\mathbf{2}}$ is perpendicular to $\mathbf{L}_{\mathbf{1}}$ and passes through A.
(a) Work out the coordinates of the point where line $\mathbf{L}_{\mathbf{2}}$ intersects the x-axis.
gradient of $L_{1}=-2$
gradient of $L_{2}=\frac{1}{2}$

$$
\begin{aligned}
& y=\frac{1}{2} x+c \\
& 2=\frac{1}{2}(6)+c \\
& 2=3+c \\
& c=-1
\end{aligned}
$$

At x-axis $y=0$

$$
\begin{aligned}
& y=\frac{1}{2} x-1 \\
& 0=\frac{1}{2} x-1
\end{aligned}
$$

$$
\times 2\binom{1=\frac{1}{2} x}{2=x} \times 2
$$

(3)
(b) Work out the coordinates of the point where line $\mathbf{L}_{\mathbf{2}}$ intersects the y-axis.

At y-axis $x=0$

$$
\begin{aligned}
& y=\frac{1}{2}(0)-1 \\
& y=-1
\end{aligned}
$$

18 The straight line $\mathbf{L}_{\mathbf{1}}$ has the equation $y=2 x+2$
The point A has coordinates $(-8,11)$
Line $\mathbf{L}_{\mathbf{2}}$ is perpendicular to $\mathbf{L}_{\mathbf{1}}$ and passes through A.
Lines $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ intersect at the point P.
Line $\mathbf{L}_{\mathbf{1}}$ intersects the x-axis at the point Q.
Line $\mathbf{L}_{\mathbf{2}}$ intersects the x-axis at the point R.
Work out the area of triangle $P Q R$.

$$
\begin{aligned}
& \text { gradient of } L_{1}=2 \\
& \text { gradient of } L_{2}=-\frac{1}{2} \\
& y=-\frac{1}{2} x+c \\
& 11=-\frac{1}{2}(-8)+c \\
& 11=4+c \\
& c=7 \\
& L_{2} \text { is } y=-\frac{1}{2} x+7
\end{aligned}
$$

L_{1} and L_{2} intersect when

$$
\times 2\left(\quad \begin{array}{rl}
2 x+2 & =-\frac{1}{2} x+7 \\
4 x+4 & =-x+14 \\
5 x & =10 \\
x & =2 \\
y & =2(2)+2 \\
y & =6 \\
P & =(2,6)
\end{array}\right.
$$

$$
\begin{array}{r}
2 x+2=0 \\
2 x=-2 \\
x=-1 \\
Q=(-1,0) \\
-\frac{1}{2} x+7=0 \\
7=\frac{1}{2} x \\
x=14 \\
R=(14,0)
\end{array}
$$

$$
\text { Area }=\frac{1}{2} \times 15 \times 6
$$

