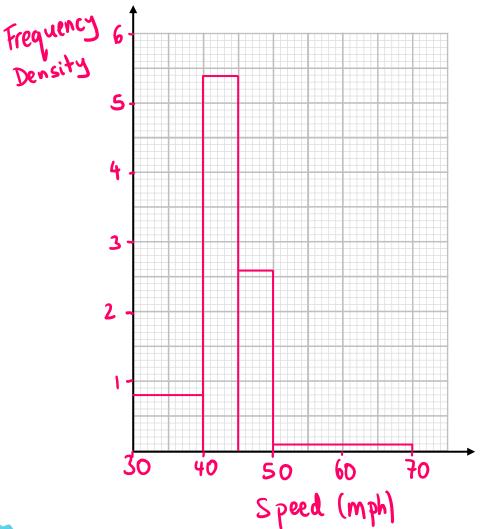

Drawing Histograms

1 Here is some information about the masses, in kg, of 60 dogs.

Mass, m (kg)	Frequency	Frequency Density
0 < <i>m</i> ≤ 5	18	18 ÷ 5 = 3.6
5 < m ≤ 15	28	28 ÷ 10 = 2.8
15 < <i>m</i> ≤ 25	9	9 + 10 = 0.9
25 < m ≤ 50	5	5 ÷ 25 = 0·2

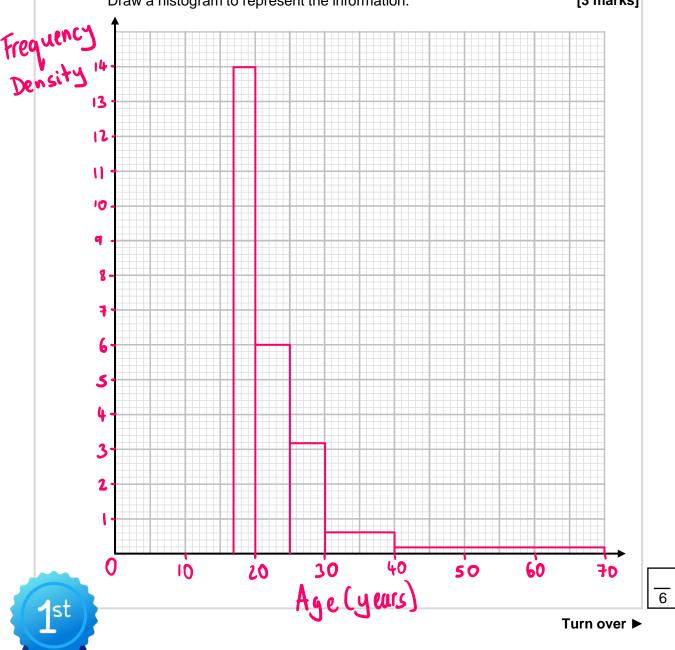
Draw a histogram to represent the information.



2 Here is some information about the speeds, in mph, of 50 vehicles.

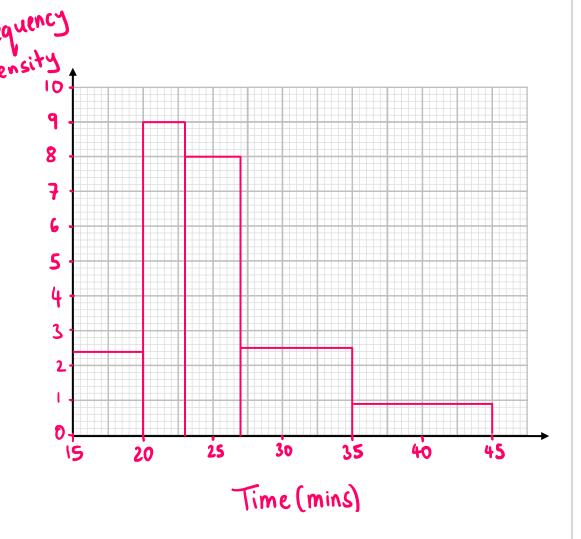
Speed, S (mph)	Frequency	Frequency Density
30 < S ≤ 40	8	8 ÷ 10 = 0.8
40 < <i>S</i> ≤ 45	27	27 ÷ 5 = 5.4
45 < S ≤ 50	13	13 = 5 = 2.6
50 < <i>S</i> ≤ 70	2	2 ÷ 20 = 0·1

Draw a histogram to represent the information.



Here is some information about the ages of 100 people taking their driving test. 3

Age (A years)	Frequency	Frequency Density
17 < <i>A</i> ≤ 20	42	42 ÷ 3 = 14
20 < A ≤ 25	30	30 ÷ 5 = 6
25 < <i>A</i> ≤ 30	16	16 ÷ 5 = 3·2
30 < A ≤ 40	6	6 ÷ 10 = 0.6
40 < A ≤ 70	6	$6 \div 30 = 0.2$


Draw a histogram to represent the information.

4 Here is some information about the times, in minutes, of 100 runners for a race.

Time, t (minutes)	Frequency	Frequency Density
15 < <i>t</i> ≤ 20	12	12 ÷ 5 = 2.4
20 < t ≤ 23	27	27 ÷ 3 = 9
23 < t ≤ 27	32	32 ÷ 4 = 8
27 < t ≤ 35	20	20 ÷ 8 : 2·5
35 < <i>t</i> ≤ 45	9	9 ÷ 10 = 0.9

Draw a histogram to represent the information.

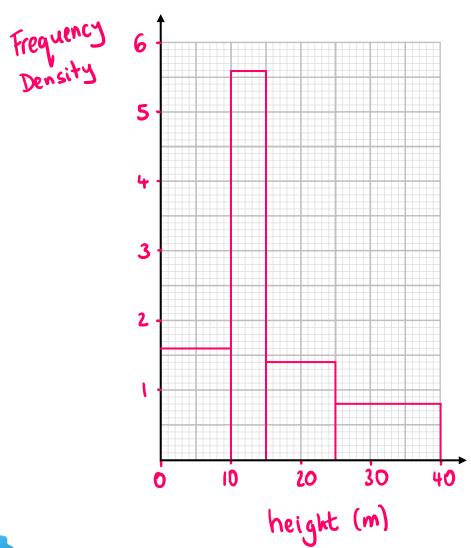


5 Here is some information about the distance, in metres, of 40 long jumps.

Distance, d (metres)	Frequency	Frequency Density
6 < <i>d</i> ≤ 7	2	2:1 = 2
7 < <i>d</i> ≤ 7.5	2	2 ÷0·5 = 4
7.5 < <i>d</i> ≤ 8	6	6 ÷ 0.5 = 12
8 < <i>d</i> ≤ 8.2	18	18 ÷ 0.2 = 90
8.2 < <i>d</i> ≤ 8.5	12	12 ÷ 0·3 = 40

 $\label{eq:decomposition} \mbox{Draw a histogram to represent the information.}$

[3 marks]

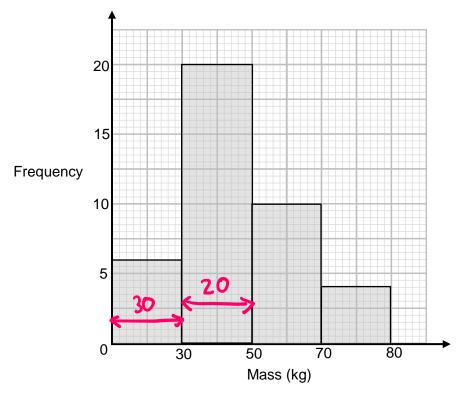

6

Turn over ▶

6 Here is some information about the heights, in metres, of 70 trees in a park.

Height, h (metres)	Frequency	Frequency Density
0 < <i>h</i> ≤ 10	16	16 ÷ 10 = 1.6
10 < <i>h</i> ≤ 15	28	28 ÷ 5 = 5.6
15 < <i>h</i> ≤ 25	14	14 ÷ 10 = 1.4
25 < h ≤ 40	12	12 ÷ 15 = 0.8

Draw a histogram to represent the information.



7 Here is some information about the masses, in kg, of 40 sheep.

Mass (m kg)	Frequency
0 < m ≤ 30	6
30 < m ≤ 50	20
50 < <i>m</i> ≤ 70	10
70 < m ≤ 80	4

Shaun drew a histogram for the information in the table.

Write down two mistakes that Shaun has made

[2 marks]

Mistake 1 Shaun has plotted frequency rather than frequency density

Mistake 2 The Scale for mass is not consistent.

In the first bar 2 squares = 30 but the next bar 2 squares = 20

