Similar Triangles

SCAN ME

REVISE THIS

 TOPIC$1 P Q R$ and $R S T$ are similar triangles.
$P Q$ is parallel to $S T$.

$P Q=9 \mathrm{~cm} \quad R Q=6 \mathrm{~cm} \quad R T=5 \mathrm{~cm} \quad S T=6 \mathrm{~cm}$
(a) Work out the length of $P R$.

$$
\frac{P R}{5}=\frac{9}{6}
$$

$$
P R=\frac{9 \times 5}{6}
$$

$$
7 \cdot 5
$$

(2)
(b) Work out the length of $R S$.

$$
\frac{R S}{6}=\frac{6}{9} \quad R S=\frac{6 \times 6}{9}
$$

$2 E F G$ and $G H I$ are similar triangles.
$E F$ is parallel to $H I$.

$E G=8.1 \mathrm{~cm} \quad G F=18 \mathrm{~cm} \quad G H=10 \mathrm{~cm} \quad H I=12 \mathrm{~cm}$
Angle $E F G=21^{\circ}$
(a) Work out the size of angle GHI.

$$
\text { Angle } G H 1=\text { Angle EFG }
$$

(b) Work out the length of $E F$.

$$
\frac{E F}{12}=\frac{18}{10} \quad E F=\frac{18 \times 12}{10}
$$

\qquad
(c) Work out the length of GI.
(2)

$$
\frac{G 1}{8.1}=\frac{10}{18} \quad G 1=\frac{10 \times 8.1}{18}
$$

\qquad
$3 A B C$ and $A D E$ are straight lines.
$B D$ is parallel to $C E$.

$A B=4 \mathrm{~cm}$

$$
A D=5 \mathrm{~cm}
$$

$$
D E=15 \mathrm{~cm}
$$

$B D=3.5 \mathrm{~cm}$
(a) Work out the length of $C E$.

$$
\frac{C E}{3.5}=\frac{20}{5} \quad C E=\frac{20 \times 3.5}{5}
$$

(b) Work out the length of $B C$.

$$
\begin{array}{l|r}
\frac{x+4}{4}=\frac{20}{5} & x+4=16 \\
x+4=\frac{20 \times 4}{5} & x=12
\end{array}
$$

$4 A D E$ is a right-angled triangle. $B C$ is parallel to $D E$.

$A B=6 \mathrm{~cm} \quad A C=10 \mathrm{~cm} \quad B C=8 \mathrm{~cm} \quad B D=1.5 \mathrm{~cm}$
(a) Work out the length of $D E$.

$$
\frac{D E}{8}=\frac{7.5}{6} \quad D E=\frac{7.5 \times 8}{6}
$$

(b) Work out the length of $C E$. C

$$
\begin{array}{c|c}
\frac{x+10}{10}=\frac{7.5}{6} & x+10=12.5 \\
x+10=\frac{7.5 \times 10}{6} & x=2.5
\end{array}
$$

$5 A B C$ and $A D E$ are straight lines.
$B D$ is parallel to $C E$.

$A B=6 \mathrm{~cm}$

$$
B D=12 \mathrm{~cm}
$$

$$
C E=28 \mathrm{~cm}
$$

$$
D E=10 \mathrm{~cm}
$$

(a) Work out the length of $B C$.

$$
\begin{array}{r|r}
\frac{x+6}{6}=\frac{28}{12} & x+6=14 \\
x+6 & =\frac{28 \times 6}{12}
\end{array}
$$

(b) Work out the length of $A D$.

$$
\begin{array}{l|r}
\frac{y+10}{y}=\frac{28}{12} & 120=16 y \\
12(y+10)=28 y & y=7.5 \\
12 y+120=28 y &
\end{array}
$$

@1stclassmaths
$6 A B C$ and $E D C$ are straight lines.
$A E$ is parallel to $B D$.

$B C=15 \mathrm{~cm} \quad B D=9 \mathrm{~cm} \quad A E=10.5 \mathrm{~cm} \quad E C=21 \mathrm{~cm}$
(a) Work out the length of $A B .6$

$$
\begin{array}{r|r}
\frac{x+15}{15}=\frac{10.5}{9} & x+15=17.5 \\
x+15=\frac{10.5 \times 15}{9} &
\end{array}
$$

$$
2 \cdot 5
$$

(b) Work out the length of $E D$.

Find $D C$ first $\frac{y}{21}=\frac{9}{10.5}$

$$
y=18
$$

$$
y=\frac{9 \times 21}{10.5} \quad E D=21-18
$$

$7 A B C$ and $C D E$ are straight lines.
$A E$ is parallel to $B D$.

$$
B C=2.8 \mathrm{~cm} \quad D E=6.4 \mathrm{~cm}
$$

$B D: A E=1: 3$
(a) Work out the length of $A B$.

$$
\begin{array}{l|r}
\frac{x+2.8}{2.8}=\frac{3}{1} & x+2.8=8.4 \\
x+2.8=\frac{3 \times 2.8}{1} & x=5.6
\end{array}
$$

(2)
(b) Work out the length of $C D$.

$$
\begin{aligned}
\frac{y}{y+6 \cdot 4} & =\frac{1}{3} \\
3 y & =y+6 \cdot 4 \\
2 y & =6 \cdot 4
\end{aligned}
$$

\qquad
$8 A C E$ is a right-angled triangle.
$A E$ is parallel to $B D$.

$A E=40 \mathrm{~cm} \quad C D=18 \mathrm{~cm}$
$A B: B C=7: 3$
(a) Work out the length of $B D$.

$$
\begin{aligned}
\frac{x}{40} & =\frac{3}{10} \\
x & =\frac{3 \times 40}{10}
\end{aligned}
$$

\qquad
(3)
(b) Work out the length of $D E . \longleftarrow y$
cm

$$
\begin{aligned}
& \frac{y+18}{18}=\frac{10}{3} \\
& 3(y+18)=180 \\
& 3 y+54=180
\end{aligned}
$$

$$
\begin{aligned}
3 y & =126 \\
y & =42
\end{aligned}
$$

$9 A D E$ is a right-angled triangle.
$B C$ is parallel to $D E$.

$$
B C=10 \mathrm{~cm} \quad D E=15 \mathrm{~cm} \quad C E=12 \mathrm{~cm}
$$

Work out the length of $A B$.

$$
\begin{array}{rlrl}
\text { Find } A C \text { first } & A B^{2} & =A C^{2}+C B^{2} \\
\frac{x+12}{x} & =\frac{15}{10} & A B^{2}=24^{2}+10^{2} \\
10(x+12) & =15 x & A B & =676 \\
10 x+120 & =15 x & A B & =26 \\
120 & =5 x & & \\
x & =24 & &
\end{array}
$$

10 ACEG and $B C D F$ are straight lines.
$A B, D E$ and $F G$ are parallel lines.

$$
A C=8 \mathrm{~cm}
$$

$B C=6.4 \mathrm{~cm}$
Work out the length of $D F$.

$$
\begin{array}{rlrl}
\frac{x+2.5}{x} & =\frac{11.25}{7.5} & \frac{y}{6.4} & =\frac{5}{8} \\
7.5(x+2.5) & =11.25 x & y & =\frac{5 \times 6.4}{8} \\
7.5 x+18.75 & =11.25 x & y & =4 \\
18.75 & =3.75 x & \\
x & =5 & z+4=6 \\
\frac{z+4}{4} & =\frac{11.25}{7.5} & z=2 \\
z+4 & =\frac{11.25 \times 4}{7.5} &
\end{array}
$$

