3D Trig/Pythagoras
REVISE THIS TOPIC

1
Here is a cube.

$$
B F=9 \mathrm{~cm}
$$

1 (a) Work out the length of $A C$ giving your answer to 1 decimal place.

$$
A C^{2}=162
$$

$$
A C=12.7279 \ldots
$$ cm

1 (b) Work out the length of CE giving your answer to 1 decimal place.

$$
C E^{2}=(\sqrt{162})^{2}+9^{2} \quad C E=\sqrt{243}
$$

$$
C E^{2}=243 \quad C E=15.5884 \ldots
$$

Here is a cuboid.

$$
B C=24 \mathrm{~cm} \quad C D=10 \mathrm{~cm} \quad D H=9 \mathrm{~cm}
$$

2 (a) Work out the length of $B D$.

$$
B D^{2}=B C^{2}+C D^{2}
$$

$$
B D^{2}=24^{2}+10^{2} \quad B D=\sqrt{676}
$$

$$
B D^{2}=676
$$

2 (b) Work out the length of BH giving your answer to 1 decimal place.

$$
\begin{array}{ll}
B H^{2}=B D^{2}+D H^{2} & \\
B H^{2}=26^{2}+9^{2} & B H=\sqrt{757} \\
B H^{2}=757 & B H=27.5136 \ldots \\
\text { Answer_ } & 27.5
\end{array}
$$

2 (c) Work out the size of angle $D B H$ giving your answer to 1 decimal place.

$$
\begin{aligned}
\sin (x)=\frac{9}{27 \cdot 5 \ldots} & x
\end{aligned} \quad \sin ^{-1}\left(\frac{9}{27.5 \ldots}\right)
$$

3 Here is a cube.
The surface area of the cube is $3456 \mathrm{~cm}^{2}$

Work out the length of $E C$ giving your answer to 1 decimal place.

$$
\begin{aligned}
& 3456 \div 6=576 \mathrm{~cm}^{2} \text { (area of one face) } \\
& \sqrt{576}=24 \mathrm{~cm} \text { (length of one edge) } \\
& A C^{2}=A B^{2}+B C^{2} \quad E C^{2}=A C^{2}+A E^{2} \\
& A C^{2}=24^{2}+24^{2} \quad E C^{2}=(\sqrt{1152})^{2}+24^{2} \\
& A C^{2}=1152 \quad E C^{2}=1728 \\
& A C=\sqrt{1152} \quad E C=\sqrt{1728} \\
& A C=33.94 \ldots \quad E C=41.5692 \ldots
\end{aligned}
$$

4 Here is a cuboid.

$$
C D=6 \mathrm{~cm} \quad D H=5 \mathrm{~cm} \quad \text { Angle } B D C=60^{\circ}
$$

Work out the perimeter of triangle $B D H$.

$B D=12 \mathrm{~cm}$
Perimeter $=5+12+13$

5 Here is a cuboid.
M is the midpoint of line $E H$.

$$
B C=30 \mathrm{~cm} \quad C D=12 \mathrm{~cm} \quad D H=19 \mathrm{~cm}
$$

Work out the length of BM giving your answer to 1 decimal place.

$$
\begin{array}{ll}
B Q^{2}=B P^{2}+P Q^{2} & B M^{2}=B Q^{2}+Q M^{2} \\
B Q^{2}=15^{2}+12^{2} & B M^{2}=(\sqrt{369})^{2}+19^{2} \\
B Q^{2}=369 & B M^{2}=730 \\
B Q=\sqrt{369} & B M=\sqrt{730} \\
B Q=19.209 \ldots & B M=27.0185 \ldots
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Here is a cuboid.
P is the point on the line $A D$ so that $A P: P D=1: 2$

$$
C D=6 \mathrm{~cm} \quad D H=7 \mathrm{~cm} \quad P C=10 \mathrm{~cm}
$$

6 (a) Work out the length of $B C$ giving your answer to 1 decimal place.

6 (b) Work out the length of $B P$ giving your answer to 1 decimal place.
[2 marks]

$$
\begin{array}{ll}
B P^{2}=B A^{2}+A P^{2} & B P=\sqrt{52} \\
B P^{2}=6^{2}+4^{2} & B P=7 \cdot 211 \ldots \\
B P^{2}=52 &
\end{array}
$$

Answer
$7 \cdot 2$ cm

6 (c) Work out the size of angle BPF giving your answer to 1 decimal place. [2 marks]

$$
\begin{aligned}
\tan (x)=\frac{7}{7 \cdot 21 \ldots} & x
\end{aligned} \quad=\tan ^{-1}\left(\frac{7}{7.21 \ldots}\right)
$$

Here is a cube.
$B G=6 \mathrm{~cm}$

Work out the volume of the cube giving your answer to 1 decimal place. [4 marks]

$$
\begin{aligned}
B G^{2} & =B C^{2}+C G^{2} \\
6^{2} & =x^{2}+x^{2} \\
\div 2\left[\begin{array}{l}
36
\end{array}\right. & =2 x^{2} \\
18 & =x^{2} \\
x & =\sqrt{18}
\end{aligned}
$$

\qquad
\qquad

Answer \qquad cm^{3}
$8 \quad A B C D E$ is a square-based pyramid.
M is the midpoint of the line $A C$ and $A C$ is perpendicular to $M E$.

$E C=53 \mathrm{~cm}$

$$
E M=45 \mathrm{~cm}
$$

$$
\text { Volume of pyramid }=\frac{1}{3} \times \text { area of base } \times \text { perpendicular height }
$$

Work out the volume of the pyramid.

Volume $=\frac{1}{3} \times \sqrt{1568} \times \sqrt{1568} \times 45$

Here is a triangular prism.

$$
A B=18 \mathrm{~cm} \quad B C=22 \mathrm{~cm} \quad \text { Angle } B F C=70^{\circ}
$$

9 (a) Work out the length of $A F$ giving your answer to 1 decimal place.

$$
\begin{array}{rl}
\sin (70)=\frac{22}{B F} & A F^{2}=A B^{2}+B F^{2} \\
B F=\frac{22}{\sin (70)} & A F^{2}=18^{2}+23.4 \ldots 2 \\
B F=23.411757 \ldots \\
A F & =\sqrt{872.11757 \ldots} \\
A F & A F 29.5316 \ldots \\
& 29.5
\end{array}
$$

9 (b) Work out the size of angle FAC giving your answer to 1 decimal place.

$$
\begin{array}{ll}
A C^{2}=A B^{2}+B C^{2} & \cos (x)=\frac{\sqrt{808}}{29.53 \ldots} \\
A C^{2}=18^{2}+22^{2} & \cos (x)=0.9625 \\
A C^{2}=808 & \cos (x) \\
A C=\sqrt{808} & x=\cos ^{2}(0.962 \ldots) \\
& 15.7
\end{array}
$$

Here is a cuboid.

$$
C D=3.5 \mathrm{~cm} \quad D H=4.5 \mathrm{~cm}
$$

Angle $H A D=38^{\circ}$

10 (a) Work out the length of $A G$ giving your answer to 1 decimal place.

$$
\begin{array}{rlrl}
\sin (38) & =\frac{4.5}{A H} & A G^{2} & =A H^{2}+H G^{2} \\
A H & =\frac{4 G^{2}}{}=7.309 \ldots{ }^{2}+3.5^{2} \\
\sin (38) & A G & =65.674 \ldots \\
& =7.309 \ldots & A G & =8.65 .674 \ldots \\
& & =89 \ldots
\end{array}
$$

Answer \qquad cm

10 (b) Work out the size of angle HAG giving your answer to 1 decimal place. [2 marks]

$$
\begin{gathered}
\sin (x)=\frac{3.5}{8 \cdot 10 \ldots} \quad \sin (x)=0.43188 \ldots \\
x=\sin ^{-1}(0.43188 \ldots) \\
x=25.5873 \ldots \\
25.6
\end{gathered}
$$

11 Here is a triangular prism.

$$
\begin{aligned}
& B F=15 \mathrm{~cm} \quad \text { Angle } C E D=33^{\circ} \\
& B F: B C=5: 12 \quad
\end{aligned}
$$

Work out the size of angle ACE giving your answer to 1 decimal place. [6 marks]

$$
\begin{array}{cc}
B C=\frac{15}{5} \times 12 & F C^{2}=15^{2}+36^{2} \\
=36 \mathrm{~cm} & F C^{2}=1521 \\
& F C=\sqrt{1521} \\
& F C=39 \\
& F C=E D=39 \\
\cos (33)=\frac{39}{E C} & \sin (x)=\frac{15}{46.502} \\
E C=\frac{39}{\cos (33)} & \begin{aligned}
\sin (x) & =0.3225 \ldots \\
E C=46.502 \ldots & x=\sin ^{-1}(0.322 .) \\
& x=18.81815 \ldots
\end{aligned}
\end{array}
$$

\square
$12 \quad A B C D E$ is a square-based pyramid placed on top of cube $B C D E F G H I$ M is the midpoint of the line $F H$ with $F H$ perpendicular to $M A$.

Work out the size of angle AFM giving your answer to 1 decimal place. [6 marks]

13 Here is a cuboid.

$$
\begin{aligned}
& C G: C D: C B=1: 2: 3 \\
& B G=k \mathrm{~cm}
\end{aligned}
$$

Show that the volume of the cuboid can be written in the form $\frac{3 \sqrt{a}}{b} k^{3}$ where a and b are integers.

$$
\begin{array}{rlr}
x^{2}+(3 x)^{2} & =k^{2} & x=\frac{k}{\sqrt{10}} \\
x^{2}+9 x^{2} & =k^{2} & x=\frac{k \sqrt{10}}{10} \\
10 x^{2} & =k^{2} \\
x^{2} & =\frac{k^{2}}{10} & V=\frac{60 \sqrt{10} k^{3}}{1000} \\
\text { Volume } & =x \times 2 x \times 3 x \\
& =6 x^{3} \\
& =6 \times\left(\frac{k \sqrt{10}}{10}\right)^{3} \\
& =6 \times \frac{k^{3} \times 10 \sqrt{10}}{1000}
\end{array}
$$

