

Discrete Random Variables

REVISE THIS TOPIC

CHECK YOUR ANSWERS

1 X and Y are independent discrete random variables with the following probability distributions.

x	1	2	3	4
P(X=x)	p	0.25	0.25	0.35

У	2	4	6	8
P(Y=y)	0.2	0.3	0.4	q

(a) Find the values of p and q

(2)

(b) Find

(i) P(X > 2)

(1)

(ii) P(Y < 6)

(1)

(iii) $P(Y \le 6)$

(1)

(iv) P(X > Y)

(2)

Z is a discrete random variable with values z = 0, 1, 2, 3, 4The probability distribution for Z is a discrete uniform distribution.

(c) Find

(i) P(Z = 3)

(1)

(ii) P(Z > 1)

(1)

(Total for Question 1 is 9 marks)

2 *X* is a random variable with the following probability distribution.

х	0	1	2	3	4	5	6
P(X=x)	p	\overline{q}	r	0.14	0.16	0.19	0.21

(a) Find P(
$$4 \le X < 6$$
)

(1)

$$P(X > 1) = 0.88$$

$$P(X=0) = 2 \times P(X=1)$$

(b) Find the values of p, q and r.

(3)

The random variable $Y = X^2$

(c) Find

(i)
$$P(Y = 3)$$

(1)

(ii)
$$P(Y > 4)$$

(1)

(iii) P(X < Y)

(1)

(Total for Question 2 is 7 marks)

1st

1

3 *X* is a random variable with the following probability distribution.

x	5	6	7	8	9
P(X=x)	k	k	3 <i>k</i>	5 <i>k</i>	5 <i>k</i>

(a) Find the value of k

(2)

- (b) Find
 - (i) $P(X \le 6)$

(1)

(ii)
$$P(5 < X < 9)$$

(1)

The random variable Y = 4X

n is an integer with P(X + Y < n) > 0.5

(c) Find the minimum possible value for n.

(3)

(Total for Question 3 is 7 marks)

4 X is a random variable with the following probability distribution.

x	1	2	3	4	5
P(X=x)	p	p+q	p-q	4q	p + 0.08

P(X < 3) = 0.305

(a) Find
$$P(X=2)$$

Y is a random variable with the following probability distribution.

у	1	2	3
P(Y=y)	а	$12b^2$	4 <i>c</i>

The probability distribution for Y is a discrete uniform distribution.

(b) Given that a, b and c are all positive, find the value of a + b + c. (4)

(Total for Question 4 is 8 marks)

5 X, Y and Z are independent discrete random variables with the following probability distributions.

x	1	2	3	4	5
P(X=x)	0.2	0.1	0.05	0.25	0.4

у	0	2	4	6	8
P(Y=y)	0.24	0.18	0.11	0.15	0.32

Z	5	6	7	8
P(Z=z)	0.4	0.07	0.13	0.4

(a) Find

(i)
$$P(2 < X < 5)$$

$$(ii) P(Y>2)$$

(b) Find

(i)
$$P(X+Y>11)$$

(ii)
$$P(X+Z=11)$$

$$(iii) P(Y > Z)$$

(Total for Question 5 is 9 marks)

6 A bag contains 5 blue counters, 1 red counters and 4 green counters.

Three counters are taken at random from the bag without replacement.

The discrete random variable *X* represents the number of red counters selected. The discrete random variable *Y* represents the number of green counters selected.

(a) Find the complete probability distribution of
$$X$$
. (3)

A different bag contains 4 blue counters and 1 red counter.

Tom randomly takes counters from the bag until he has taken out the red counter. The discrete random variable M represents the number of counters Tom takes from the bag.

(c) Find the complete probability distribution for M. (3)

(Total for Question 6 is 11 marks)

At the end of the year Hannah completes exams in three subjects. 7

The probability that Hannah passes each of the subjects is shown below.

Subject	Maths	Chemistry	History
Probability of passing	0.9	p	0.6

The outcome of each exam is independent of the others.

The probability that Hannah passes all three exams is 0.459

(a) Find the value of p. **(1)**

The discrete random variable *X* represents the number of exams that Hannah passes.

(Total for Question 7 is 5 marks)

Kat plays a game at a fair that costs £5 per play.

(b) Find the complete probability distribution of *X*.

The probability that Kat wins the game is 0.3

Kat has £20 and plays the game either until she has won the game twice or until she has no money left.

The discrete random variable X represents the number of times that Kat plays the game.

(a) Find the complete probability distribution of *X*.

(4)

(4)

The discrete random variable Y represents the number of times that Kat wins the game.

(b) Find the complete probability distribution of Y.

(4) (Total for Question 8 is 8 marks)

A biased dice can land on the numbers 1, 2, 3, 4, 5, or 6.

The random variable X represents the number that the dice lands on.

$$P(X=r) = P(X=7-r)$$
 for $r = 1, 2, 3$

P(X=3) = 0.05 and $P(X=2) = 2 \times P(X=1)$ Given that

(a) Find the complete probability distribution of X.

(4)

The dice is rolled 3 times.

The random variable *Y* represents the number of times that the dice lands on the number 2.

(b) Find the complete probability distribution of Y.

(4)

(Total for Question 9 is 8 marks)

10 *X* is a random variable with the following probability distribution.

x	1	2	3	4	5
P(X=x)	0.12	0.16	0.2	0.24	0.28

$$Y = X^2$$
$$Z = 2X$$

(a) Find

(i) $P(X < 3)$	(1)
(-) - ()	` '

(ii)
$$P(Y < 3)$$

(iii) $P(2 < Z \le 10)$

(b) Find

$$(i) P(Y=Z)$$

(ii)
$$P(Y-4X=-3)$$

(iii)
$$P(Y + 8 \le 3Z)$$

(Total for Question 10 is 10 marks)

11 The random variable X has a probability function

$$P(X=x) = kx^2$$
 $x = 1, 2, 3$

where k is a constant.

(a) Find the value of
$$k$$

(b) Find
$$P(X = 3)$$

The random variable *Y* has a probability function

$$P(Y=y) = (c-3)y$$
 $y = 1, 2, 3, 4$

where c is a constant.

(c) Find the value of
$$c$$

(d) Find
$$P(Y = 2)$$

(Total for Question 11 is 8 marks)

12 The random variable *X* has a probability function

$$P(X = x) = (k + 1)x$$
 $x = 1, 2, 3$

$$x = 1, 2, 3$$

where k is a constant.

(a) By working out the value of k, find the complete probability distribution of X.

(4)

The random variable *Y* has a probability function

$$P(Y = y) = \frac{c - y^2}{100}$$
 $y = 1, 2, 3, 4$ where c is a constant.

$$y = 1, 2, 3, 4$$

(b) By working out the value of c, find the complete probability distribution of Y.

(4)

(Total for Question 12 is 8 marks)

13 The random variable X has a probability function

$$P(X=x) = \frac{1}{k-x}$$
 $x = 1, 3$ where k is a constant.

$$x = 1, 3$$

Find the value of k giving your answer in the form $a + \sqrt{b}$, where a and b are integers.

(5)

(Total for Question 13 is 5 marks)

14 The random variable *X* has a probability function

$$P(X=x)=kx-c$$

$$x = 5, 6, 7, 8$$

where *k* and *c* are constants.

Given that P(X = 5) = 0.01 find the values of k and c.

(4)

(Total for Question 14 is 4 marks)

15 The random variable *X* has a probability function

$$P(X=x) = \begin{cases} kx & x = 1, 2\\ (k-0.2)x & x = 3, 4 \end{cases}$$

where k is a constant.

(a) By working out the value of k, find the complete probability distribution of X.

(5)

The random variable Y has a probability function

$$P(Y=y) = \begin{cases} c(y+0.5) & y=0, 1\\ cy^2 & y=2, 3, 4 \end{cases}$$

where c is a constant.

(b) By working out the value of c, find the complete probability distribution of Y.

(5)

(Total for Question 15 is 10 marks)

Solutions