REVISE THIS
TOPIC

1 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& \begin{array}{l}
y=x^{2}-3 x-4 \\
y=2 x-10
\end{array} \\
& x^{2}-3 x-4=2 x-10 \\
& x^{2}-5 x-4=-10 \\
& x^{2}-5 x+6=0 \\
& (x-2)(x-3)=0 \\
& x=2 \quad x=3
\end{aligned}
$$

when $x=2$

$$
\begin{aligned}
& y=2(2)-10 \\
& y=-6
\end{aligned}
$$

when $x=3$

$$
\begin{aligned}
& y=2(3)-10 \\
& y=-4
\end{aligned}
$$

2 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& \begin{array}{l}
y=x^{2}+5 x-8 \\
y-4 x=4
\end{array} \leftarrow y=4+4 x \\
& x^{2}+5 x-8=4+4 x \\
& x^{2}+x-8=4 \\
& x^{2}+x-12=0 \\
& (x+4)(x-3)=0 \\
& x=-4 \quad x=3
\end{aligned}
$$

when $x=-4$

$$
\begin{aligned}
& y=4+4(-4) \\
& y=-12
\end{aligned}
$$

when $x=3$

$$
\begin{aligned}
& y=4+4(3) \\
& y=16
\end{aligned}
$$

$$
x=-\frac{-4 \quad y=-12, x=3 \quad y=16}{\text { (Total for Question } 2 \text { is } 5 \text { marks) }}
$$

3 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& y=3 x^{2}+2 x-8 \\
& y=9 x-10 \\
& 3 x^{2}+2 x-8=9 x-10 \\
& 3 x^{2}-7 x-8=-10 \\
& 3 x^{2}-7 x+2=0 \\
& (3 x-1)(x-2)=0 \\
& 3 x-1=0 \quad x-2=0 \\
& x=\frac{1}{3} \quad x=2
\end{aligned}
$$

when $x=\frac{1}{3}$

$$
y=9\left(\frac{1}{3}\right)-8
$$

$$
y=-5
$$

when $x=2$

$$
\begin{aligned}
& y=9(2)-8 \\
& y=10
\end{aligned}
$$

$$
x=\frac{1}{3} \quad y=-5, x=2 \quad y=10
$$

(Total for Question 3 is 5 marks)
4 C is a graph with equation $y=x^{2}-5 x+10$
\mathbf{L} is a straight line with equation $\quad y=3 x-6$
Using algebra, find the coordinates of the point of intersection of \mathbf{C} and \mathbf{L}.
You must show all your working.

$$
\begin{gathered}
x^{2}-5 x+10=3 x-6 \\
x^{2}-8 x+10=-6 \\
x^{2}-8 x+16=0 \\
(x-4)(x-4)=0 \\
x=4
\end{gathered}
$$

when $x=4$

$$
\begin{aligned}
& y=3(4)-6 \\
& y=12-6 \\
& y=6
\end{aligned}
$$

5 C is a graph with equation $y=5 x^{2}-x-15$
\mathbf{L} is a straight line with equation $y=10 x-3$
Using algebra, find the coordinates of the points of intersection of \mathbf{C} and \mathbf{L}. You must show all your working.

$$
\begin{aligned}
& 5 x^{2}-x-15=10 x-3 \\
& 5 x^{2}-11 x-15=-3 \\
& 5 x^{2}-11 x-12=0 \\
& (5 x+4)(x-3)=0 \\
& 5 x+4=0 \quad x-3=0 \\
& x=-\frac{4}{5} \quad x=3
\end{aligned}
$$

when $x=-\frac{4}{5}$

$$
\begin{aligned}
& y=10\left(-\frac{4}{5}\right)-3 \\
& y=-8-3 \\
& y=-11
\end{aligned}
$$

when $x=3$

$$
\begin{aligned}
& y=10(3)-3 \\
& y=27 \\
& \frac{-\left(\frac{4}{5}\right.}{},-\frac{11}{27},
\end{aligned}
$$

(Total for Question 5 is 5 marks)
6 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& y=x^{2}+x+1 \\
& y=x+3
\end{aligned}
$$

Give your answers as exact values.

$$
\begin{aligned}
x^{2}+x+1 & =x+3 \\
x^{2}+1 & =3 \\
x^{2}-2 & =0 \\
x^{2} & =2 \\
x & = \pm \sqrt{2}
\end{aligned}
$$

when $x=\sqrt{2}$

$$
y=\sqrt{2}+3
$$

when $x=-\sqrt{2}$ $y=-\sqrt{2}+3$

$$
x=\sqrt{2} \quad y=3+\sqrt{2}, x=-\sqrt{2} \quad y=3-\sqrt{2}
$$

7 Solve algebraically the simultaneous equations

$$
\begin{array}{rlrl}
\begin{array}{l}
x^{2}+y^{2}=100 \\
y=x-2
\end{array} \\
x^{2}+(x-2)^{2} & =100 & & \text { when } x=8 \\
x^{2}+x^{2}-2 x-2 x+4 & =100 & y=8-2 \\
2 x^{2}-4 x+4 & =100 & & y=6 \\
2 x^{2}-4 x-96 & =0 & & \text { when } x=-6 \\
x^{2}-2 x-48 & =0 & & y=-6-2 \\
(x-8)(x+6) & =0 & & y=-8 \\
x=8 x=-6 & &
\end{array}
$$

8 Solve algebraically the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=200 \\
& y=2 x-10
\end{aligned}
$$

$9 \mathbf{C}$ is a graph with equation $x^{2}+y^{2}=65$
\mathbf{L} is a straight line with equation

$$
2 y=10-x<x=10-2 y
$$

Using algebra, find the coordinates of the point of intersection of \mathbf{C} and \mathbf{L}.
You must show all your working.

$$
\begin{aligned}
(10-2 y)^{2}+y^{2} & =65 \\
100-20 y-20 y+4 y^{2}+y^{2} & =65 \\
5 y^{2}-40 y+100 & =65 \\
5 y^{2}-40 y+35 & =0 \\
y^{2}-8 y+7 & =0 \\
(y-7)(y-1) & =0 \\
y=7 \quad y & =1
\end{aligned}
$$

when $y=7$

$$
\begin{aligned}
& x=10-2(7) \\
& x=-4
\end{aligned}
$$

$$
\text { when } y=1
$$

$$
x=10-2(1)
$$

$$
x=8
$$

(Total for Question 9 is 5 marks)
$10 \mathbf{C}$ is a graph with equation $x^{2}+y^{2}=85$
\mathbf{L} is a straight line with equation $y+3 x=25 \leftarrow y=25-3 x$
Using algebra, find the coordinates of the points of intersection of \mathbf{C} and \mathbf{L}.
You must show all your working.

$$
\begin{aligned}
& x^{2}+(25-3 x)^{2}=85 \\
& x^{2}+625-75 x-75 x+9 x^{2}=85 \\
& 10 x^{2}-150 x+625=85 \\
& 10 x^{2}-150 x+540=0 \\
& x^{2}-15 x+54=0 \\
&(x-6)(x-9)=0 \\
& x=6 x=9
\end{aligned}
$$

when $x=6$

$$
\begin{aligned}
& y=25-3(6) \\
& y=7
\end{aligned}
$$

when $x=9$

$$
\begin{aligned}
& y=25-3(9) \\
& y=-2
\end{aligned}
$$

(Total for Question 10 is 5 marks)

11 Solve algebraically the simultaneous equations

$$
\begin{array}{rl}
\begin{aligned}
& x^{2}-2 y^{2}=7 \\
& 2 y=x+1 \leftarrow=2 y-1
\end{aligned} \\
(2 y-1)^{2}-2 y^{2}=7 & \text { when } y=3 \\
4 y^{2}-2 y-2 y+1-2 y^{2}=7 & x=2(3)-1 \\
2 y^{2}-4 y+1=7 & x=5 \\
2 y^{2}-4 y-6=0 & \text { when } y=-1 \\
y^{2}-2 y-3=0 & x=2(-1)-1 \\
(y-3)(y+1)=0 & x=-3 \\
y=3 \quad y=-1 & \\
& x=5 \quad y=3, x=-3 \quad y=-1
\end{array}
$$

(Total for Question 11 is 5 marks)
12 C is a graph with equation

$$
2 x^{2}-3 y^{2}=7
$$

\mathbf{L} is a straight line with equation

$$
y=x-2
$$

Using algebra, find the coordinates of the points of intersection of \mathbf{C} and \mathbf{L}. You must show all your working.

$$
\begin{aligned}
2 x^{2}-3(x-2)^{2} & =7 \\
2 x^{2}-3\left(x^{2}-4 x+4\right) & =7 \\
2 x^{2}-3 x^{2}+4 x+4 & =7 \\
-x^{2}+4 x+4 & =7 \\
-x^{2}+4 x-3 & =0 \\
x^{2}-4 x+3 & =0 \\
(x-3)(x-1) & =0 \\
x=3 \quad x & =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { when } x=3 \\
& y=3-2 \\
& y=1 \\
& \text { when } x=1 \\
& y=1-1 \\
& y=0
\end{aligned}
$$

(Total for Question 12 is 5 marks)
$13 \mathbf{C}$ is a graph with equation $x^{2}-8 y^{2}=k$ where k is a positive integer.
\mathbf{L} is a straight line with equation

$$
4 y=x-1
$$

\mathbf{L} and \mathbf{C} intersect at points A and B.
The x-coordinate of point A is -7 .
(a) Work out the value of k.

At $A x=-7$

$$
\begin{aligned}
& 4 y=x-1 \\
& 4 y=-7-1 \\
& 4 y=-8 \\
& y=-2 \\
& A=(-7,-2)
\end{aligned}
$$

$$
\begin{align*}
x^{2}-8 y^{2} & =k \\
(-7)^{2}-8(-2)^{2} & =k \\
49-8(4) & =k \\
49-32 & =k \\
17 & =k
\end{align*}
$$

(3)
(b) Work out the coordinates of point B.

$$
\begin{gathered}
x=4 y+1 \\
(4 y+1)^{2}-8 y^{2}=17 \\
16 y^{2}+8 y+1-8 y^{2}=17 \\
8 y^{2}+8 y+1=17 \\
8 y^{2}+8 y-16=0 \\
y^{2}+y-2=0 \\
(y+2)(y-1)=0 \\
y=-2 \quad y=1 \\
A \quad B
\end{gathered}
$$

when $y=1$

$$
x=4(1)+1
$$

$$
x=5
$$

