

Circle Theorem Proofs

REVISE THIS TOPIC

1

A, B and C are points on the circumference of a circle, centre O. AOB is a diameter of the circle.

Prove that angle $ACB = 90^{\circ}$

$$= x + 90 - x$$

(Total for Question 1 is 4 marks)

A, B and C are points on the circumference of a circle, centre O.

Prove that angle $AOC = 2 \times \text{angle } ABC$

(Total for Question 2 is 4 marks)

A, B, C and D are points on the circumference of a circle, centre O.

Prove that angle ABC + angle $CDA = 180^{\circ}$

Let angle ABC = x and Angle CDA = y

Minor angle AOC = 2x and majorangle AOC = 2y

as angle at the centre is twice the angle at the

circumference

$$25c + 2y = 360^{\circ} \text{ (angles around a points)}$$

$$25c + 2y = 360^{\circ} \text{ (angles around a points)}$$

$$x + y = 180^{\circ}$$
Angle ABC + Angle CDA = 180°

(Total for Question 3 is 4 marks)

A, B, C and D are points on the circumference of a circle, centre O.

Prove that angle ABC = angle ACD

Let angle $AOD = \infty$ Angle $ABD = \frac{\infty}{2}$ angle at the centre is Angle $ACD = \frac{\infty}{2}$ twice the angle at the Circumference

Angle ABD = Angle ACD = == 2

(Total for Question 4 is 2 marks)

A, B and C are points on the circumference of a circle, centre O. BT is the tangent to the circle at B.

Prove that angle CAB = angle CBT

(Total for Question 5 is 4 marks)

A, B and C are points on the circumference of a circle, centre O. The lines OB and AC intersect at the point P.

Angle APO = angle OPC = 90°

Prove that AP = PC

Triangles OAP and OCP both have side OP Angle APO = angle OPC = 90°

Therefore triangles OAP and OCP are congruent due to RHS

If they are congruent then we have

so the remaining sides are equal and AP=PC

(Total for Question 6 is 4 marks)