Circle Theorem Proofs

A, B and C are points on the circumference of a circle, centre O. $A O B$ is a diameter of the circle.

Prove that angle $A C B=90^{\circ}$
$O C=O A=O B$ (all radii)
Let angle $O A C=x$
Angle $A C O=$ angle $O A C=x$
(Base angles in an is osceles triangle are equal)
Angle $A O C=180-x-x$

$$
\begin{aligned}
&=180-2 x\left(\text { angles in a triangle add to } 180^{\circ}\right) \\
& \text { Angle } B O C=180-(180-2 x) \\
&\left.=2 x \text { (angles on a straight line add to } 180^{\circ}\right) \\
& \text { Angle } O B C=\text { Angle } O C B=1 / 2(180-2 x) \\
&=90-x \\
& \text { (Base angles in an is osceles triangle are equal) } \\
& \text { Angle } A C B=\text { Angle } A C O+\text { Angle } O C B \\
&=x+90-x \\
&=90^{\circ}
\end{aligned}
$$

2

A, B and C are points on the circumference of a circle, centre O.
Prove that angle $A O C=2 \times$ angle $A B C$
$O C=O A=O B$ (all radii)
Let angle $O A B=x$ Let angle $O C B=y$
Angle $O B A=x$ Angle $O B C=y$
Base angles in an isosceles triangle are equal
Angle $C O B=180-2 y$ Angle $A O B=180-2 x$
Angles in a triangle add to 180°

$$
\begin{aligned}
\text { Angle } A B C & =x+y \\
\text { Angle } A O C & =360-(180-2 y)-(180-2 x) \\
& =360-180+2 y-180+2 x) \\
& =2 x+2 y \quad \text { angles arad a } \\
& =2(x+y) \quad \text { point add to } 360^{\circ} \\
& =2 x \text { Angle } A B C
\end{aligned}
$$

3

A, B, C and D are points on the circumference of a circle, centre O.
Prove that angle $A B C+$ angle $C D A=180^{\circ}$

Let angle $A B C=x$ and Angle $C D A=y$ Minor angle $A O C=2 x$ and major angle $A O C=2 y$ as angle at the centre is twice the angle at the circumference
$\div 2\left(\begin{array}{r}2 x+2 y=360^{\circ} \text { (angles around a point } \\ \left.2 \div 2 \text { add to } 360^{\circ}\right)\end{array}\right.$ $x+y=180^{\circ}$

Angle $A B C+$ Angle $C D A=180^{\circ}$

4

A, B, C and D are points on the circumference of a circle, centre O.
Prove that angle $A B C=$ angle $A C D$

Let angle $A O D=x$ Angle $A B D=\frac{x}{2}\{$ angle at the centre is Angle $A C D=\frac{x}{2}$ twice the angle at the circumference

$$
\text { Angle } A B D=\text { Angle } A C D=\frac{x}{2}
$$

5

A, B and C are points on the circumference of a circle, centre O. $B T$ is the tangent to the circle at B.

Prove that angle $C A B=$ angle $C B T$
Let angle $C B T=x$
Angle $O B C=90-x$ (a tangent meets a
Angle $B C O=90-x$ radius at $\left.90^{\circ}\right)$ Angle $C O B=180-(90-x)-(90-x)$ $=180-90+x-90+x$

$$
=2 x
$$

(angles in a triangle add to 180°)
Angle $C A B=x$ angle at the centre is twice the angle at the circumference

$$
\text { Angle } C A B=\text { Angle } C B T=x
$$

6

A, B and C are points on the circumference of a circle, centre O. The lines $O B$ and $A C$ intersect at the point P.

Angle $A P O=$ angle $O P C=90^{\circ}$
Prove that $A P=P C$
$O A=O C$ (both radii)
Triangles OAP and OCP both have side OP Angle $A P O=$ angle $O P C=90^{\circ}$
Therefore triangles OAP and OCP are congruent due to RHS

If they are congruent then we have
$O A=O B$
$O P=O P$ (common side)
so the remaining sides are equal and $A P=P C$

