

16	Show that $\frac{12x-36}{x^2+5x} \times \frac{x^2+9x+20}{3x-9}$ can be written in the form $a + \frac{b}{x}$ where <i>a</i> and <i>b</i> are integers.
	12(x-3) (x+4)(x+5)
	$\frac{12(x-3)}{5(x+5)} \times \frac{(x+4)(x+5)}{3(x-3)}$
	$= \frac{12(x-3)(x+4)(x+5)}{3x(x+5)(x-3)}$
	3x(x+5)(x-3)
	$= \frac{4(x+4)}{2}$
	χ.
	$= \frac{4x + 16}{\infty}$
	<u>ى</u>
	$= 4 + \frac{16}{3}$
	$2r^2 - 15r + 28$
17	Show that $(10x - 35) \div \frac{2x^2 - 15x + 28}{2x^2 - 32}$ can be written in the form $ax + b$
	where <i>a</i> and <i>b</i> are integers. [4 marks
	S(2x-7), $2(x+4)(x-4)$
	$5(2x-7) \times \frac{2(x+4)(x-4)}{(2x-7)(x-4)}$
	(2x-7)(x-4)
	$(2x - 7)(x - 4) = \frac{10(2x - 7)(x + 4)(x - 4)}{2}$
	(2x-7)(x-4)
	$(2x - 7)(x - 4) = \frac{10(2x - 7)(x + 4)(x - 4)}{2}$
	$\frac{(2x-7)(x-4)}{= \frac{(0(2x-7)(x+4)(x-4)}{(2x-7)(x-4)}}$
	$= \frac{10(2x-7)(x+4)(x-4)}{(2x-7)(x-4)}$ $= 10(x+4)$

18 Show that
$$9x^{-3} \times \frac{3x^{5} + 10x^{4}}{9x^{2} - 100} + \frac{x^{2}}{6x - 20}$$
 can be written in the form $\frac{a}{x}$
(4 marks]
where *a* is an integer.
 $\frac{9}{x^{3}} \times \frac{x^{4}(3x + 10)}{(3x + 10)(3x - 10)} \times \frac{2(3x - 10)}{x^{2}}$
 $= \frac{18 x^{4}(3x + 10)(3x - 10)}{x^{5}(3x + 10)(3x - 10)}$
 $= \frac{18}{x}$
19 $2x - \frac{x^{3} - x^{2}}{x^{2} + 2x - 3} \times \frac{2x^{2} - 1}{x^{2}}$ can be written in the form $\frac{ax + b}{x + 3}$
where *a* and *b* are integers. Work out the values of *a* and *b*. [4 marks]
 $\frac{2x - \frac{x^{2}(x - 1)}{(x + 3)(x - 1)} \times \frac{2x^{2} - 1}{x^{2}} = \frac{(2x^{4} + 6x) - (2x^{2} - 1)}{x + 3}$
 $= 2x - \frac{2x^{2} - 1}{x + 3} = \frac{2x^{4} + 6z - 2x^{2} + 1}{x + 3}$
 $\frac{2(x - \frac{2x^{2} - 1}{x + 3} - \frac{2x^{2} - 1}{x + 3} = \frac{6x + 1}{x + 3}$
 $a = 6$ $b = 1$

16