Functions and Equations  
Provide Functions and Equations  
REVISE THIS  
TOPIC  
1 f(x) = 2x - 9 g(x) = 7x + 1  
(a) Solve fg(x) = 35  

$$\int g(x) = 2(7x + 1) - 9$$
  
 $= |4x + 2 - 9$   
 $= |4x - 7$   
 $|4x - 7 = 35$   
 $|4x = 42$   
(b) Solve F'(x) + g'(x) = 5  
 $y = 2x - 9$   $y = 7x + 1$   $\frac{2x+9}{4} + \frac{x-1}{4} = 5$   
 $x = 2y - 9$   $x = 7y + 1$   $\frac{7(x+9) + 1(x+9)}{14} = 5$   
 $x = 2y - 9$   $x = 7y + 1$   $\frac{7(x+9) + 1(x+9)}{14} = 5$   
 $x = 2y - 9$   $x = 7y + 1$   $\frac{7(x+9) + 1(x+9)}{14} = 5$   
 $x = 1$   
 $\frac{x = 1}{2}$   
 $x = 1$   
(c) Solve F'(x) =  $\frac{x+9}{7}$   $g''(x) = \frac{x-1}{7}$   $9x + 63 + 2x - 2 = 70$   
 $y = 2x - 9$   $y = \frac{x-1}{7} = y$   $3x + 63 + 2x - 2 = 70$   
 $y = 461 = 70$   
 $y = 1$   
(d)  
Total for Question 1 is 7 marks)  
1  
We 1st classmaths



<sup>2</sup> www.1stclassmaths.com



 $\mathbf{h}(x) = 3x$ 

**3** 
$$f(x) = \frac{36}{x^2}$$
  $g(x) = \sin(x)$ 

(a) Show that  $f^{-1}(3) \times g(60)$  is an integer.

$$y = \frac{36}{x^{2}} \qquad y = \frac{\sqrt{36}}{\sqrt{x}} \qquad f^{-1}(3) \times g(60) \\ = \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{2} \\ x = \frac{36}{y^{2}} \qquad y^{2} = \frac{6}{\sqrt{x}} \qquad = \frac{6\sqrt{3}}{\sqrt{x}} \\ y^{2} = \frac{36}{x} \qquad f^{-1}(x) = \frac{6}{\sqrt{x}} \qquad = \frac{6}{2} \\ y = \sqrt{\frac{36}{x}} \qquad f^{-1}(x) = \frac{6}{\sqrt{x}} \qquad = \frac{6}{2} \\ y = \sqrt{\frac{36}{x}} \qquad = 3 \quad (integer)$$

(b) Solve hf(x) - fh(x) = 26

$$hf(x) = 3 \times \frac{36}{x^2} \qquad \frac{108}{x^2} - \frac{4}{x^2} = 26$$

$$= \frac{108}{x^2} \qquad \frac{104}{x^2} = 26$$

$$fh(x) = \frac{36}{(3x)^2} \qquad \frac{104}{x^2} = x^2$$

$$= \frac{36}{9x^2} \qquad \frac{104}{26} = x^2$$

$$= \frac{36}{9x^2} \qquad 4 = x^2$$

$$= \frac{4}{x^2} \qquad x = \pm \sqrt{4}$$

$$x = 2 \quad x = -2$$
(4)
(Total for Question 3 is 8 marks)

(4)

www.1stclassmaths.com

下 🔰 💽 @ 1stclassmaths

4 
$$f(x) = x^{2}$$
  $g(x) = x + 4$   $h(x) = x + 2$   
(a) Show that  $fg(x) = h(x) = 2g(x) + 2h(x)$   
f  $g(x) = (x+\psi)^{2}$   $fh(x) = (x+1)^{2}$   
 $= x^{2} + 8x + 16$   $= x^{2} + 4x + 44$   
f  $g(x) = fh(x) = x^{2} + 8x + 16 - (x^{2} + 4x + 44)$   
 $= x^{2} + 8x + 16 - (x^{2} + 4x + 44)$   
 $= x^{2} + 8x + 16 - (x^{2} - 4x - 44)$   
 $= 4x + 12$   
 $= 2(2x + 6)$   
 $= 2(2x + 6)$   
 $= 2(x + 4 + x + 2)$   
 $= 2(g(x) + h(x))$   
 $= 2g(x) + 2h(x)$   
(b) Solve  $gf^{1}(x) = 9$   
(c)  
f  $f(x) = \sqrt{x} + 44 = 9$   
 $\sqrt{x} = 44 = 9$   
 $\sqrt{x} = 25$   
(c)  
 $\chi = 25$   
(c)  
 $\chi = 25$   
(c)

www.1stclassmaths.com



5 
$$f(x) = x^2$$
  $g(x) = \frac{x+8}{11}$   $b(x) = ax+b$   
(a) Solve  $f(x+2) = g^{1}(x)$   
 $\int (x+2) = (x+1)^{2}$   $x^{2} + 4yx + 4 = 1|x-8$   
 $= x^{2} + 4x + 4 = x^{2} - 7x + 12 = 0$   
 $(x-3)(x-4) = 0$   
 $g^{-1}(x) = 1|x-8$   $x = 3$   $x = 4$   
 $(4)$   
 $y = ax + b$   $h(3) = 7$   $|5a + b = 55$   
 $x = ay + b$   $3a + b = 7$   $- 3a + b = 7$   
 $x - b = ay$   $|12a = 48$   
 $\frac{x-b}{a} = y$   $h^{-1}(55) = 15$   $a = 4$   
 $\frac{55-b}{a} = 15$   
 $h^{-1}(x) = \frac{x-b}{a}$   $3a + b = 7$   
 $55 - b = 15a$   $12 + b = 7$   
 $55 = 15a + b$   $b = -5$   
 $a = 4$   
 $b = -5$   
(Total for Question 5 is 9 marks)

www.1stclassmaths.com

5