

Video Solutions

PRACTICE PAPER FOR

AQA Level 2 Further Maths Paper 2 (June 2023)

---- Disclaimer

In 2022 I wrote a series of predicted papers that in many cases reflected the real exam paper very well. This was due to the exam boards providing advance information on the topics that were going to be in each paper. This information is no longer provided so "predicting" a paper is not possible. Nobody can know what topics and types of questions will come up in each paper, apart from the few examiners that write them.

This paper has been created based on the topics that did not occur on paper 1 and those that frequently appear in past papers. The paper should be excellent at helping students revise for exams, however should not be relied upon as the basis for revision. The topics from this paper may well appear in the real exams, however there is absolutely no guarantee of this for the reasons previously mentioned. Some topics may appear, some may not.

Ultimately the best way to prepare for the exams is to revise all topics.

Answer **all** questions in the spaces provided.

1 $\frac{3}{4}$ of h = 85% of (h - 3)

Work out the value of h.

[3 marks]

n =

2 ABC is a straight line with AB: AC = 2:5

Work out the coordinates of point C.

[3 marks]

C = ____

[2 marks]

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$$

The point P(3, -2) is transformed by matrix A to point P' Work out the coordinates of P'

4 Solve $\frac{25^{2x}}{5} = 5^x$ [3 marks]

Answer____

5 x + y : x - y = 7 : 1

Work out the ratio x : y

Give your answer in its simplest form. [3 marks]

Answer

14

6	Simplify fully $\frac{x(x+2)^3 - 8(x+2)^2}{x^2 - 4}$	[4 marks]
	Answer	-
7	$y = \frac{9x - 3x^2}{x^2}$	
	Work out an expression for the rate of change of y with respect to x .	[3 marks]
	Answer	-

Q	The <i>n</i> th term of a sequence is	$2n^2 + 13$
o .	The hin term of a sequence is	$3n^2 + 15n$

8 (a)	Two terms in the sequence have the value 0.5
-------	--

Work out the both possible values of <i>n</i> .	[4 marks]	

$$n = \underline{\hspace{1cm}}$$
 and $n = \underline{\hspace{1cm}}$

_			
Answer_			

12

9 (a) Here is a graph of y = f(x)

Define f(x), stating clearly the domain for each part.

[3 marks]

$$f(x) = \underline{\qquad} \leq x < \underline{\qquad}$$

Do not write
outside the
box

0 /b\	The forestion wie since ha	(·)	3
9 (b)	The function g is given by	g(x) =	5x + 1

Give your answer as an inequality.

Write down the value of x for which the function not defined.

[1 mark]

Answer

9 (c) The function h is given by $h(x) = \sin(x)$ with domain $180^{\circ} \le x \le 360^{\circ}$ Work out the range of the function. [2 marks]

Answer

Work out the values of x for which $f(x) = 2x^2 + 20x$ is a decreasing function.

Answer

9

Turn over ▶

[3 marks]

Do not	И	vrit
outside	Э	the
box	x	

11 (a)	Use the factor theorem to show that	(4x - 1)	is a factor of $f(x)$.	[2 marks]

11 (b)	Hence, fully factorise $f(x)$.	[3 marks]

Answer

2	The n th term of a sequence is $an - bn^2$		Do not write outside the box
	The first term in the sequence is equal to 7 The fifth term in the sequence is equal to -5		
	Work out the 20 th term of the sequence.	[4 marks]	

Answer_

$$\mathbf{M} = \left(\begin{array}{cc} k & 0 \\ 0 & k \end{array} \right)$$

13 (a) Describe fully the transformation represented by matrix M. [1 mark]

- 13 (b) Describe fully the transformation represented by matrix M². [2 marks]
- **13 (c)** Here are two transformations in the x y plane.
 - A: Reflection in the *y*-axis.
 - B: Reflection in the line y = x

Use matrix multiplication to show that transformation A followed by B is equivalent to a single rotation.

[4 marks]

14	Integers are made using all of the digits 1, 2, 3, 4, 7 and 9.		Do not wri outside th box
	Each integer made		
	is greater than 300,000 is less than 500,000 is even		
	How many integers can be made?	[3 marks]	
	Answer		

Video Solutions

The diagram shows a sports hall in a shape of a cuboid ABCDEFGH.

The height of the sports hall, CG = 8 mThe width of the sports hall, AB = 40 m

Two security cameras are fixed at points X and Y.

The camera at point *X* is located at 90% of the height of the sports hall. The camera at point *Y* is located at 80% of the height of the sports hall.

The angle of elevation of the camera at X from the point G is 18° Calculate the angle of elevation of the camera at Y from the point G. Give your answer to the nearest degree.

re.	marks]
בו	marksi

•

Answer.

The graphs of $x^2 + y^2 = 225$ and y = 9 are shown below. The graphs intersect at the point P and Q.

The tangents to the circle at points *P* and *Q* both intersect the *y*-axis at point *R*.

Work out the area of the triangle PQR.	[6 marks]		

Answer____units²

11

	5	O	@1stclassmaths
--	----------	---	----------------

This lengths of a cuboid are x cm, (3-x) cm and (x + 5) cm

17 (a)	Show that the volume of the cuboid, \it{V} , is given by the cuboid of	ven by $V = 15x - 2x^2 - 2x^2$	- x ³ [3 marks]

Use differentiation to work Give your answer to 1 dec	value of v as x valles.	[5

Answer _____ cm³

Do not	write
outside	e the
bo	X

18 (a)	Show that $\frac{1}{\cos^2\theta} + \frac{2\sin\theta - \cos\theta}{\cos\theta} \equiv \tan^2\theta + 2\tan\theta$			[3 marks]		
18 (b)	Hence solve	$\frac{1}{\cos^2\theta}$ +	$\frac{2\sin\theta-\cos\theta}{\cos\theta}$	= 3 for	0° ≤ θ ≤ 360°	[4 marks]

Answer____

15