Iteration

REVISE THIS
TOPIC

1 A sequence of numbers if formed by the iterative process

$$
u_{n+1}=\sqrt{\frac{u_{n}}{10}+2} \quad u_{1}=42.5
$$

Work out the values of u_{2} and u_{3}

2 A sequence of numbers if formed by the iterative process

$$
u_{n+1}=\frac{\left(u_{n}\right)^{2}+3}{5} \quad u_{1}=\sqrt{3}
$$

Work out the values of u_{2} and u_{3}

3 A sequence of numbers if formed by the iterative process

$$
u_{n+1}=\sqrt{80-5 u_{n}} \quad u_{1}=12.8
$$

Work out the values of u_{2} and u_{3}

$$
\begin{array}{ll}
u_{2}=\sqrt{80-5(12.8)} & u_{3}=\sqrt{80-5(4)} \\
u_{2}=4 & u_{3}=7.74596 \ldots
\end{array}
$$

\qquad

$$
u_{2}=
$$

\qquad

$$
u_{3}=7.745966692
$$

4 A sequence of numbers if formed by the iterative process

$$
u_{n+1}=4 u_{n}-\left(u_{n}\right)^{2} \quad u_{1}=0.3
$$

Work out the values of u_{2} and u_{3}

$$
\begin{array}{ll}
u_{2}=4(0.3)-0.3^{2} & u_{3}=4(1.11)-1.11^{2} \\
u_{2}=1.11 & u_{3}=3.2079
\end{array}
$$

\qquad
\qquad

$$
\begin{aligned}
& u_{2}=\frac{1 \cdot 11}{u_{3}=}=3 \cdot 2079
\end{aligned}
$$

$$
x_{n+1}=\sqrt[3]{x_{n}+4}
$$

$$
x_{1}=2
$$

5 (a) Work out the values of x_{2} and x_{3}
Write down all the figures on your calculator display.

$$
\begin{array}{ll}
x_{2}=\sqrt[3]{2+4} & x_{3}=\sqrt[3]{1.877+4} \\
x_{2}=1.817120593 & x_{3}=1.798467893
\end{array}
$$

\qquad
\qquad

$$
\begin{aligned}
& x_{2}=1.817120593 \\
& x_{3}=1.798467893
\end{aligned}
$$

5 (b) Work out the solution to the equation to 5 decimal places.
Continue iterations

$$
x=1.796321903
$$

\qquad
\qquad

$$
x=1.79632
$$

$$
x_{n+1}=\sqrt{13-x_{n}}
$$

with

$$
x_{1}=3
$$

6 (a) Work out the values of x_{2} and x_{3}
Write down all the figures on your calculator display.

$$
\begin{array}{ll}
x_{2}=\sqrt{13-3} & x_{3}=\sqrt{13-3.16} \\
x_{2}=3.1622766 & x_{3}=3.136514361
\end{array}
$$

\qquad
\qquad

$$
\begin{aligned}
& x_{2}=3 \cdot 16227766 \\
& x_{=}=3 \cdot 136514361
\end{aligned}
$$

6 (b) Work out the solution to the equation to 3 decimal places.
continue iterations

$$
x=3.140054945
$$

\qquad
\qquad

$$
x=\quad 3 \cdot 140
$$

7 An approximate solution to an equation is found using the iterative formula

$$
x_{n+1}=\frac{\left(x_{n}\right)^{2}+6}{10} \quad \text { with } \quad x_{1}=1
$$

7 (a) Work out the values of x_{2} and x_{3}
\qquad
\qquad

$$
x_{2}=\square
$$

7 (b) Work out the solution to the equation to 4 decimal places.
continue iterations

$$
x=0.6411010565
$$

\qquad
\qquad

$$
x=0.6411
$$

8
An approximate solution to an equation is found using the iterative formula

$$
x_{n+1}=10-\sqrt{\frac{8}{x_{n}}}
$$

with $x_{1}=2$

8 (a) Work out the values of x_{2} and x_{3}

$$
x_{2}=10-\sqrt{\frac{8}{2}} \quad x_{3}=10-\sqrt{\frac{8}{8}}
$$

\qquad
\qquad
\qquad

$$
\begin{aligned}
& x_{2}= \\
& x_{3}=
\end{aligned}
$$

8 (b) Work out the solution to the equation to 5 decimal places.
continue iteration us

$$
x=9.060335423
$$

\qquad
\qquad

$$
x=9.06034
$$

