Iteration

REVISE THIS TOPIC

1 (a) Use the iteration formula
$x_{n+1}=\frac{\left(x_{n}\right)^{2}+3}{5}$ to find the values of x_{1}, x_{2} and x_{3}
Start with $x_{0}=\sqrt{3}$

$$
\begin{aligned}
x_{1} & =\frac{(\sqrt{3})^{2}+3}{5} \\
& =1.2 \\
x_{2} & =\frac{1.2^{2}+3}{5} \\
& =0.888
\end{aligned}
$$

(b) Explain the relationship between the values of x_{1}, x_{2} and x_{3} and the equation $x^{2}-5 x+3=0$

$$
x=\frac{x^{2}+3}{5} \text { can be rearranged to give }
$$

$$
x^{2}-5 x+3=0 \text {. This means } x_{1}, x_{2} \text { and } x_{3} \text {. }
$$

are estimates to a solution of the equation.
\qquad

$$
\begin{aligned}
& x_{1}=\ldots \ldots 2 \\
& x_{2}=0.888 \\
& x_{3}=0.7577088
\end{aligned}
$$

@1stclassmaths

2 (a) Use the iteration formula
$x_{n+1}=\sqrt{\frac{x_{n}}{10}+2}$ to find the values of x_{1}, x_{2} and x_{3}
Start with $x_{0}=42.5$

$$
\begin{aligned}
x_{1} & =\sqrt{\frac{42.5}{10}+2} & x_{3} & =\sqrt{\frac{1.5}{10}+2} \\
& =2.5 & & =1.46628783
\end{aligned}
$$

$$
x_{2}=\sqrt{\frac{2.5}{10}+2}
$$

$$
\begin{equation*}
=1.5 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& x_{1}=\frac{2 \cdot 5}{1 \cdot 5} \\
& x_{2}=1 \cdot 46628783
\end{aligned}
$$

The values of x_{1}, x_{2} and x_{3} found in part (a) are estimates to the solution of an equation in the form $a x^{2}-x+b=0$ where a and b are integers.
(b) Find the values of a and b.

$$
\begin{aligned}
& x=\sqrt{\frac{x}{10}+2} \\
& x^{2}=\frac{x}{10}+2
\end{aligned}
$$

$$
\begin{aligned}
& 10 x^{2}=x+20 \\
& 10 x^{2}-x+20=0
\end{aligned}
$$

$$
a=
$$

\qquad

$$
b=
$$

\qquad
20

3 (a) Use the iteration formula

$$
x_{n+1}=\sqrt{80-5 x_{n}}
$$

to find the values of x_{1}, x_{2} and x_{3}
Start with $x_{0}=12.8$

$$
\begin{aligned}
x_{1} & =\sqrt{80-5(12.8)} & x_{3} & =\sqrt{80-5(7.74 \ldots)} \\
& =4 & & =6.42418606 \\
x_{2} & =\sqrt{80-5(4)} & & x_{1}= \\
& =7.745966692 & & x_{2}=7.745966692
\end{aligned}
$$

The values of x_{1}, x_{2} and x_{3} found in part (a) are estimates to the solution of an equation in the form $x^{2}+a x+b=0$ where a and b are integers.
(b) Find the values of a and b.

$$
\begin{align*}
& x=\sqrt{80-5 x} \\
& x^{2}=80-5 x \\
& x^{2}+5 x-80=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& a=5 \\
& b=-80
\end{aligned}
$$

4 (a) Use the iteration formula
$x_{n+1}=\sqrt[3]{8-\left(x_{n}\right)^{2}}$
to find the values of x_{1}, x_{2} and x_{3}
Start with $x_{0}=1.8$

$$
\begin{aligned}
x_{1} & =\sqrt[3]{8-1.8^{2}} \\
& =1.682166517 \\
x_{2} & =\sqrt[3]{8-1.68^{2}} \\
& =1.729175302 \\
x_{3} & =\sqrt[3]{8-1.722^{2}} \\
& =1.711109795
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1.682166517}{x}=\frac{1729175302}{1.71109795} \\
& x=18
\end{aligned}
$$

(b) Explain the relationship between the values of x_{1}, x_{2} and x_{3} and the equation $x^{3}+x^{2}-8=0$
$x=\sqrt[3]{8-x^{2}}$ can be rearranged to give $x^{3}+x^{2}-8=0$. This means x_{1}, x_{2} and $x_{3} \ldots$ are estimates to a solution of the equation.
\qquad
(Total for Question 4 is 5 marks)

5 (a) Show that the equation $x^{3}-x-4=0$ has a solution between $x=1$ and $x=2$

$$
1^{3}-1-4=-4
$$

$$
2^{3}-2-4=2
$$

change of sign so there must be a solution between

$$
\begin{equation*}
x=1 \text { and } x=2 \tag{2}
\end{equation*}
$$

(b) Show that the equation $x^{3}-x-4=0$ can be rearranged to give $x=\sqrt[3]{x+4}$

$$
\begin{aligned}
& x^{3}-4=x \\
& x^{3}=x+4 \\
& x=\sqrt[3]{x+4}
\end{aligned}
$$

(c) Starting with $x_{0}=2$, use the iteration formula $\quad x_{n+1}=\sqrt{x_{n}+4}$ three times to find an estimate for the solution of $x^{3}-x-4=0$

$$
\begin{aligned}
x_{1} & =\sqrt[3]{2+4} \\
& =1.817120593 \\
x_{2} & =\sqrt[3]{1.81 \ldots+4} \\
& =1.798467893 \\
x_{3} & =\sqrt[3]{1.79 \ldots+4} \\
& =1.796543562
\end{aligned}
$$

$$
1.796543562
$$

(3)
(d) By substituting your answer to part (c) into $x^{3}-x-4$ comment on the accuracy of your estimate for the solution to $x^{3}-x-4=0$
\qquad
This is close to zero so an accurate solution

6 (a) Show that the equation $x^{2}+x-13=0$ has a solution between $x=3$ and $x=4$
$3^{2}+3-13=-1$ change of sign so there must $4^{2}+4-13=7$ be a solution between

$$
x=3 \text { and } x=4
$$

(b) Show that the equation $x^{2}+x-13=0$ can be rearranged to give $x=\sqrt{13-x}$

$$
\begin{align*}
x^{2}+x-13 & =0 \\
x^{2}+x & =13 \\
x^{2} & =13-x \\
x & =\sqrt{13-x} \tag{2}
\end{align*}
$$

(c) Starting with $x_{0}=3$, use the iteration formula $\quad x_{n+1}=\sqrt{13-x_{n}}$ three times to find an estimate for the solution of $x^{2}+x-13=0$

$$
\begin{aligned}
x_{1}= & \sqrt{13-3} \\
= & 3.16227766 \\
x_{2}= & \sqrt{13-3.16 \ldots} \\
= & 3.136514361 \\
x_{3}= & \sqrt{13-3.14 \ldots} \\
& 3.140618671
\end{aligned}
$$

(d) By substituting your answer to part (c) into $x^{2}+x-13$
comment on the accuracy of your estimate for the solution to $x^{2}+x-13=0$

$$
(3.14 \ldots)^{2}+(3.14 \ldots)-13=0.004104309809
$$

This is close to zero so an accurate solution

7 (a) Show that the equation $x^{2}-10 x+6=0$ has a solution between $x=0$ and $x=1$ $0^{2}-10(0)+6=6$

$$
1^{2}-10(1)+6=-3
$$

change of sign so there must be a solution between

$$
x=0 \text { and } x=1
$$

(b) Show that the equation $x^{2}-10 x+6=0 \quad$ can be rearranged to give $x=\frac{x^{2}+6}{10}$

$$
\begin{align*}
x^{2}-10 x+6 & =0 \\
x^{2}+6 & =10 x \\
\frac{x^{2}+6}{10} & =x \quad x=\frac{x^{2}+6}{10} \tag{2}
\end{align*}
$$

(c) Starting with $x_{0}=1$, use the iteration formula $x_{n+1}=\frac{\left(x_{n}\right)^{2}+6}{10}$ three times to find an
estimate for the solution of $x^{2}-10 x+6=0$

$$
\begin{array}{rlrl}
x_{1} & =\frac{1^{2}+6}{10} & x_{3} & =\frac{0.649^{2}+6}{10} \\
& =0.7 & & =0.6421201 \\
x_{2} & =\frac{0.72+6}{10} & & \\
& =0.649 &
\end{array}
$$

(d) By substituting your answer to part (c) into $x^{2}-10 x+6$
comment on the accuracy of your estimate for the solution to $x^{2}-10 x+6=0$

$$
(0.642 \ldots)^{2}-10(0.642 \ldots)+6=-0.008882777 \ldots
$$

This is close to zero so an accurate solution

8 (a) Show that the equation $x^{3}-20 x^{2}+100 x-8=0$ has a solution between $x=10$ and $x=11$ $10^{3}-20(10)^{2}+100(10)-8=-8$ change of sign so there must $11^{3}-20(11)^{2}+100(11)-8=3$ be a solution between

$$
\begin{equation*}
x=10 \text { and } x=11 \tag{2}
\end{equation*}
$$

(b) Show that the equation $x^{3}-20 x^{2}+100 x-8=0$ can be rearranged to give $x=\sqrt{\frac{8}{x}}+10$

$$
\begin{align*}
x^{3}-20 x^{2}+100 x & =8 \\
x\left(x^{2}-20 x+100\right) & =8 \\
x^{2}-20 x+100 & =\frac{8}{x} \\
(x-10)(x-10) & =\frac{8}{x} \quad x=\sqrt{\frac{8}{x}}+10 \\
(x-10)^{2} & =\frac{8}{x} \\
x-10 & =\sqrt{\frac{8}{x}}
\end{align*}
$$

(c) Starting with $x_{0}=2$, use the iteration formula $\quad x_{n+1}=\sqrt{\frac{8}{x_{n}}}+10 \quad$ three times to find an estimate for the solution of $x^{3}-20 x^{2}+100 x-8=0$

$$
x_{1}=\sqrt{\frac{8}{2}}+10
$$

$$
x_{2}=\sqrt{\frac{8}{12}}+10
$$

$$
\begin{aligned}
x_{3} & =\sqrt{\frac{8}{10.8}}+10 \\
& =10.8600064
\end{aligned}
$$

(d) By substituting your answer to part (c) into $x^{3}-20 x^{2}+100 x-8$ comment on the accuracy of your estimate for the solution to $x^{3}-20 x^{2}+100 x-8=0$

$$
(10.86 \ldots)^{3}-20(10.86 \ldots)^{2}+100(10.86 \ldots)-8=0.03218034378
$$

This is close to zero so an accurate solution

