1	Expand/Factorise
2	Prime Factorisation
3	Percentage Change/Profit
4	Mixed Number Operations
5	Changing the Subject
6	Inequalities
7	Reciprocals + Error Intervals
8	Averages from Tables
9	Using a Calculator
10	Angle Bisectors
11	Straight Line Graphs
12	Estimation
13	Area/Circumference of Circles
14	Diagram Sequences
15	Reverse Percentages
16	Index Laws
17	Quadratics (Expand, Factorise, Solve)
18	Inverse Proportion
19	Speed, Distance, Time
20	Scatter Diagrams
21	Transformations
22	Pythagoras
23	Interpreting Pie Charts
24	Column Vectors
25	Recipes
26	Standard Form (Ordering)

27	Frequency Polygons	
28	Venn Diagrams	
29	Standard Form (Conversion/Calculation)	
30	Best Buys + Exchange Rate	
31	Plans and Elevations + Volume of Prism	
32	Simultaneous Equations	
33	Surface Area of Pyramid	
34	Distance-Time Graphs	
35	Angles in Regular Polygons	
36	Compound Interest	
37	Trigonometry (SOHCAHTOA)	
38	Trigonometry (SOHCAHTOA)	
39	Probability In Tables	
40	More Angles in Regular Polygons	
41	Drawing Quadratic Graphs	
42	Loci + Perpendicular Bisectors	
43	HCF/LCM	
44	Volume of Cone/Sphere	
45	Similar Triangles + Angles in Parallel Lines	
46	Finding Equation of a Straight Line	
47	Forming and Solve Equation + Area of Trapezium	
48	Probability Tree Diagrams	
49	Midpoints + Congruent Shapes	
50	Features of Quadratic Graphs	
51	Direct/Inverse Proportion	

52	Types of Graphs	78	Completing the Square	
53	Density, Mass, Volume	79	Conditional Probability	
54	Pressure, Force, Area	80	Sector Area + Area of a Triangle (Trig)	
55	Equations of Parallel Lines	81	Exact Trig Values + Surds and Brackets	
	Fibonacci Sequences	82	Proportionality	
	+ Simultaneous Equations	83	Equations of Perpendicular Lines	
57	Angles in Irregular Polygons	84	Iteration	
58	Pythagoras + Arc Length	85	Interpreting Histograms	
59	Stem and Leaf Diagrams + Box Plots	86	Cosine Rule (Side) + Sine Rule (Side)	
		87	3D Trigonometry + Pythagoras	
60	Surface Area of Spheres/Cones	88	Bounds	
61	Expand Triple Brackets	89	Algebraic Proof	
62	More Index Laws	90	Solving Quadratic Inequalities	
63	Negative Scale Factor Enlargements	91	Similar Areas/Volumes	
64	Inequality Regions	92	Cosine Rule (Angle)	
65	Capture Re-capture	93	Circle Theorems	
66	Estimating Powers and Roots	94	Invariant Points	
67	Product Rule for Counting	95	Equations with Algebraic Fractions	
68	Graphs of Trigonometric Functions	96	Bearings + Sine Rule (Angle)	
69	Cumulative Frequency	97	Velocity Time Graphs	
70	Geometric Sequences + Surds	98	Surds (Rationalise Denominator)	
71	Exponential Graphs	99	Completing the Square (Harder)	
72	Equation of Circle + Sol	100	Simplifying Algebraic Fractions	
	y	101	Non-Linear Simultaneous Equations	
73	Quadratic Formula	102	Transformations of Graphs	
74	Quadratic ${ }^{\text {n }}$ term	103	Equation of Tangent to a Circle	
75	Functions	104	Geometric Proof	
76	Drawing Histograms	105	General Iterative Processes	
77	Recurring Decimals to Fractions	106	Vectors	

1 (a) Expand and simplify $7(x-3)-2(x-10)$
(b) Factorise fully $8 x^{2} y-10 x y^{3}$
\qquad

2 Write 92 as a product of its prime factors.

3 Chloe buys a phone for $£ 120$.
She sells it for $£ 138$.
Work out Chloe's percentage profit.

4 (a) Work out $4 \frac{1}{2} \div 1 \frac{3}{4}$
Give your answer as a mixed number in its simplest form.
(b) Work out $3 \frac{2}{3}-1 \frac{2}{5}$

Give your answer as a mixed number in its simplest form.

5 Make b the subject of the formula $r=9 b-p$

6 (a) Solve $3 x+10 \leq 5-2 x$
(b) Represent your answer to part (a) on the number line below.

(c) $-9 \leq 2 p-5<-3$
p is an integer
Write down all the possible values for p

7 (a) Find the reciprocal of 1.25
Give your answer as a decimal.
(b) A number, n, is rounded to 1 decimal place.

The result is 6.4
Complete the error interval for n.

- d回 (1stclassmaths

8 The table shows information about the time, t minutes, that 60 students spent revising.

Time (t minutes $)$	Frequency
$10<t \leq 20$	28
$20<t \leq 30$	13
$30<t \leq 40$	13
$40<t \leq 50$	6

(a) Write down the modal class.
(b) Write down the interval containing the median.
(c) Work out an estimate for the mean time spent revising.

9 Use your calculator to work out $\frac{1.8^{3}}{\sqrt{17}-2}$
(a) Write down all the figures on your calculator display.
(b) Write your answer to part (a) correct to 3 significant figures.

10 Use a ruler and compasses to construct the line $B P$ that bisects the angle $A B C$. You must show all construction lines.

11 (a) On the grid below, draw the graph of $y=3 x+2$ for values of x from -2 to 3

(b) Does the point with coordinates $(25,77)$ lie on the line $y=3 x+2$?

You must show how you get your answer.

- $\mathrm{y}^{\mathbf{\gamma}}$ @ $@ 1$ stclassmaths

12 Work out an estimate for $\frac{699 \times 32}{0.21}$

13 Here is a circle and an equilateral triangle.

The circumference of the circle is 20% greater than the perimeter of the triangle.
Work out the area of the circle.
Give your answer to 3 significant figures.

14 Here is a sequence of patterns made from square tiles \square and triangular tiles.

pattern number 1

pattern number 2

pattern number 3
(a) Find an expression, in terms of n, for the number of triangular tiles in pattern n.
\qquad
Rich makes one of the patterns from the sequence.
He uses 88 total tiles.
(b) Work out how many square tiles Rich used.
\qquad square tiles

15 The number of people visiting a cinema on Saturday was 20% more than it was on Friday. The number of people who visited the cinema on Saturday was 9840

Work out the number of people who visited the cinema on Friday.

16 (a) Simplify $\frac{15 x^{6} y^{8}}{3 x y^{2}}$
(b) Simplify $\left(2 y^{3}\right)^{5}$
\qquad

17 (a) Expand and simplify $(x-5)(x-8)$
(b) Factorise $4 x^{2}-9$
(c) Solve $x^{2}+2 x-8=0$

\downarrow
 0

18 A floor with an area of $10 \mathrm{~m}^{2}$ can be tiled by 3 workers in 8 hours. Work out how long it would take 4 workers to tile a floor that is $25 \mathrm{~m}^{2}$ Assume that all workers can tile at the same rate.

19 A lorry and a car both travel from A to B.

The lorry takes the direct 60 -mile route from A to B travelling at an average speed of 50 mph . The car goes from A to B but passes through point C along the route.

Between A and C, the car travels at an average speed of 60 mph .
Both vehicles depart A at the same time and arrive at B at the same time.
Work out the average speed of the car between C and B.

- ${ }^{-}$@ @1stclassmaths

20 The scatter graph shows reaction times in milliseconds and the ages of 15 people.

Reaction time (milliseconds)

(a) One of the points plotted on the scatter graph is considered an outlier. Write down the coordinates of this point.
\qquad
\qquad
(b) For all the other points write down the type of correlation.

A person aged 55 has their reaction time measured.
(c) Use the graph to estimate their reaction time.
\qquad

21

(a) Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{B}
\qquad
\qquad
(b) Rotate triangle $\mathbf{A}, 90^{\circ}$ anticlockwise about the point $(1,0)$

Label the new triangle \mathbf{C}.
(c) Reflect triangle \mathbf{A} in the line $y=2$

Label the new triangle \mathbf{D}.
$22 A B C D$ is a kite.

$A B=A D=78 \mathrm{~cm}$
$A C=1.3 \mathrm{~m}$
Angle $A D C=$ Angle $A B C=90^{\circ}$
Work out the perimeter of the kite.
Give your answer in centimetres.

- $\mathbf{1}$ (0) 1 stclassmaths

23 Craig is revising for his science exams.
The pie chart below shows how much time he spends revising each of the subjects.

Craig spends 30 minutes longer revising Chemistry than he spends revising Physics.
Work out how many minutes Craig spends revising for Biology.
minutes

24 Here are two column vectors $\mathbf{a}=\binom{-6}{5} \quad \mathbf{b}=\binom{2}{-2}$
(a) Work out $2 \mathbf{a}-\mathbf{b}$ as a column vector.
(b) On the grid below draw and label the vector $-\mathbf{a}$

											\square				
										\|					

(c) On the grid below draw a vector that is perpendicular to \mathbf{b}.

- ${ }^{\prime}$ (0 @

25 Some of the ingredients needed to make 12 pancakes are shown below.

For 12 pancakes	
Flour	300 g
Milk	400 ml
Eggs	2

Raul has the following ingredients.
1500 g of flour
1800 ml of milk
11 eggs
Work out the maximum number of pancakes that Raul can make.

26 Write these numbers in order of size
Start with the smallest number.

8.6×10^{4}
0.086
86×10^{2}
8600×10^{-4}

27 The table shows information about the time, t minutes, that 100 people took to complete a race.

Time $(t$ minutes $)$	Frequency
$60<t \leq 70$	3
$70<t \leq 80$	12
$80<t \leq 90$	15
$90<t \leq 100$	44
$100<t \leq 110$	26

On the grid, draw a frequency polygon for the information in the table.

$28 \mathscr{E}=\{1,2,3,4,5,6,7,8,9,10\}$
$A=\{$ multiples of 3$\}$
$B=\{$ factors of 12$\}$
(a) Complete the Venn diagram for this information.

A number is chosen at random from the universal set,
(b) Find the probability that this number is in the set $\mathrm{A} \cup \mathrm{B}$

29 (a) Work out $\left(8 \times 10^{10}\right) \times\left(3 \times 10^{3}\right)$
Give your answer in standard form.

(b) Work out $\frac{1 \times 10^{3}+2 \times 10^{2}}{4.8 \times 10^{-2}}$

Give your answer in standard form.

- s^{\prime} (O) @1stclassmaths

30 Nadia buys her favourite Cola in the United Kingdom.
Whilst on holiday in Spain she sees the same Cola drink for sale.

United Kingdom

Spain

$£ 1=€ 1.17$
Which of the two bottles represents better value for money?
Show clearly how you got your answer.

31 The diagram shows a prism with a cross section in the shape of a pentagon.

(a) On the centimetre grids below, draw the front elevation, side elevation and the plan of the prism.

Front elevation

Side elevation

Plan

31 (b) Work out the volume of the prism.

(Total for Question 31 is $\mathbf{4}$ marks)

32 Solve the simultaneous equations

$$
\begin{aligned}
& 5 x+3 y=5 \\
& 4 x-2 y=-7
\end{aligned}
$$

$$
x=.
$$

\qquad

$$
y=.
$$

\qquad

\downarrow 두 @1stclassmaths

$33 A B C D E$ is a square-based pyramid.

$A B=B C=C D=D A=10 \mathrm{~cm}$
$E A=E B=E C=E D=13 \mathrm{~cm}$
Calculate the surface area of the squared-based pyramid.
\qquad

34 Sovra drove from her home to the dentist.
The distance time graph below shows Sovra's journey to the dentist.

Distance from home (miles)

Sovra stayed at the dentist for 45 minutes.
She then drove home at a constant speed of 32 mph .
Complete the distance time graph.
$35 A B C D E$ is a regular pentagon and $A B F G$ is a square.

Work out the value of x

$$
x=.
$$

\qquad

36 Tia has $£ 5000$ to invest for 3 years. She compares the deals of two banks.

Bank B
First Year
4\% compound interest
All Other Years
1% compound interest

How much more money will Tia make going with bank A compared to bank B.
\qquad

37

Triangle $A B C$ is a right-angled triangle.
Angle $A B C=81^{\circ}$
$A B=11 \mathrm{~cm}$
Work out the length of $A C$.
Give your answer to 1 decimal place.

38

Triangle $A B C$ is a right-angled triangle.
$A B=8 \mathrm{~cm}$
$A C=13 \mathrm{~cm}$
Work out the size of angle $C A B$.
Give your answer to 1 decimal place.

39 There are only red cubes, yellow cubes, blue cubes and green cubes in a box.
The table shows the probabilities of taking at random a red or yellow cube from the box.

Colour	red	yellow	blue	green
Probability	0.8	0.1		

The number of blue cubes in the box is the same as the number of green cubes.
(a) Complete the table.

Kim claims that there are a total of 75 cubes in the box.
(b) Explain why Kim must be incorrect.
\qquad
\qquad
\qquad

40 The interior angle of a regular polygon is 168°
(a) Work out the exterior angle for the regular polygon
(b) Work out how many sides the regular polygon has.

41 (a) Complete the table of values for $y=x^{2}-3 x-1$

x	-2	-1	0	1	2	3	4
y		3			-3	-1	

(b) On the grid, draw the graph of $y=x^{2}-3 x-1$ for values of x from -2 to 4

(c) Use the graph to estimate the solutions to $x^{2}-3 x-1=2$
$42 A B C D$ is a map of a rectangular field.

1 cm represents 50 metres.

A tower needs to be placed in the field so that it is
Closer to point C that to point D.
Within 350 metres of point B.
Shade the region of possible positions for the tower.

\downarrow - $\mathbf{~}$ @ $@$ 1stclassmaths

43 (a) Find the highest common factor (HCF) of 75 and 210
(b) Find the lowest common multiple (LCM) of 75 and 210

44 Below are a solid cone and a solid sphere.

Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Volume of a Sphere $=\frac{4}{3} \pi r^{3}$

Volume of the cone $=30 \%$ of the volume of the sphere.
Work out h, the height of the cone.
Give your answer to 1 decimal place.
$45 A C E$ is a triangle.

Not drawn accurately.

Line $B D$ is parallel to line $A E$.
$C D=4 \mathrm{~cm}$
$B D=6 \mathrm{~cm}$
$A E=18 \mathrm{~cm}$
$D E=x \mathrm{~cm}$
Angle $E A B=41^{\circ}$
Angle $D E B=25^{\circ}$
Angle $D B C=y^{\circ}$
(a) Work out the value of x
\qquad
(b) Write down the value of y.

$$
y=
$$

\qquad
(c) Give a reason for your answer to part (b).

46 The line \mathbf{L} is shown on the grid.

Find an equation for \mathbf{L}.
$47 A B C D$ is a trapezium.

$A D$ is parallel to $B C$.
$B C=x+1 \mathrm{~cm}$
$A D=x+3 \mathrm{~cm}$
$B E=x-3 \mathrm{~cm}$
The area of the trapezium is equal to $24 \mathrm{~cm}^{2}$
(a) Show that $x^{2}-x-30=0$
(b) Work out the value of x.

- d (1 1stlassmans

48 Katarina competes in both the 200 metre sprint and the long jump at her school sports day.
The probability that she will win the 200 metre sprint is 0.9
The probability that she will win the long jump is 0.8
(a) Complete the probability tree diagram.

(2)
(b) Work out the probability that Katarina wins exactly one of the events.

49

$A=(4,10)$
$B=(10,2)$
Line segment $C M$ is parallel to the x-axis and point C is on the y-axis.
Point M is the midpoint of both line segments $A B$ and $C D$.
(a) Work out the coordinates of the point D.
(b) Prove that triangle $A M C$ is congruent to triangle $D M B$.
\qquad

50 The graph of $y=x^{2}+2 x-2$ is drawn on the grid.

(a) Write down the coordinates of the turning point of the graph.
\qquad
\qquad
(b) Write down the equation of the line of symmetry for the graph.
(c) Write down an estimate for the roots of the equation $x^{2}+2 x-2=0$

51 (a) y is directly proportional to x.
Complete the table.

\boldsymbol{y}	1	80		
\boldsymbol{x}	4		10	0.5

(b) Using the axes below, sketch a graph to represent the statement p is inversely proportional to q

52 Here are nine graphs.

Each of the equations in the table is the equation of one of the graphs
Complete the table.

Equation	Letter of Graph
$y=-x^{2}$	
$y=x^{3}$	
$y=\sin (x)$	
$y=\frac{1}{x}$	

- d (1 1stlassmans

53 The diagram shows a solid cuboid made from only gold and silver.

Volume of gold in the cuboid : volume of silver in the cuboid $=3: 5$
The density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$
The density of silver is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$
Work out the mass of the cuboid in kilograms.
Give your answer to 3 significant figures.

54 The diagram shows a solid cube placed on a horizontal floor.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

The force exerted by the cube on the floor is equal to 320 newtons.
The pressure between the floor and the cube is equal to $500 \mathrm{~N} / \mathrm{m}^{2}$
Work out the length of one of the sides of the cube.
Give your answer in metres.
$55 \boldsymbol{L}_{1}$ and \boldsymbol{L}_{2} are straight lines.
$\boldsymbol{L}_{\mathbf{1}}$ has equation $2 y-8 x=10$
$\boldsymbol{L}_{\mathbf{2}}$ joins the points with coordinates $(3,10)$ and $(8,30)$
Show that lines \boldsymbol{L}_{1} and \boldsymbol{L}_{2} are parallel.

56 The first three terms of a Fibonacci sequence are shown below

$$
3 a \quad 2 b \quad 3 a+2 b
$$

The fourth term of the sequence is equal to 51
The fifth term of the sequence is equal to 84
Work out the values of a and b.

$$
\begin{aligned}
& a=. \\
& b=.
\end{aligned}
$$

\qquad
\qquad
$57 A B C D E$ is a pentagon.

Angle $A B C=$ Angle $B C D=$ Angle $C D E=y^{\circ}$
Angle $D E A=$ Angle $E A B=x^{\circ}$
$x: y=1: 6$
Work out the values of x and y.

$$
x=
$$

\qquad
\qquad

$$
y=
$$

58

$A B C G$ and $D E F G$ are sectors with centre G.
$A G=10 \mathrm{~cm}$
$\mathrm{AF}=C D=5 \mathrm{~cm}$
Angle $A G C=80^{\circ}$
Angle $G F A=$ Angle $C D G=90^{\circ}$
Calculate the length of the arc $D E F$.
Give your answer to 1 decimal place.

- iv d @

59 The stem and leaf diagram below shows information about the average battery life, in hours, of 23 mobile phones from company A .

0	9										
1	0	2	2	2	3	4	5	6	6	7	9
2	0	0	1	5	6	7	7	8	9		
3	1	1									

Key: 3 1 represents 31 hours
(a) On the grid, draw a box plot for this information.

The box plot below shows information about the average battery life of phones from company B.

(b) Compare the distribution of battery lives from company A and company B.
\qquad
\qquad
\qquad
\qquad

60 The diagram shows a solid shape.
The shape is a cone on top of a hemisphere.

The diameter of the hemisphere is 16 cm .
The height of the cone is 15 cm .
Work out the surface area of the solid shape.
Give your answer to 3 significant figures.

- ${ }^{-}$(0 @

61 Expand and simplify $(x+9)(x+2)(x-3)$

62 (a) Write down the value of $16^{\frac{1}{2}}$

(b) Write down the value of $\left(\frac{25}{4}\right)^{0}$
(c) $4^{n}=8$

Work out the value of 100^{-n}

ㄹ (

63

Enlarge shape A by scale factor -2 with centre of enlargement $(-2,1)$.
Label your image B.

64 On the grid show, by shading, the region that satisfies all these inequalities.

$$
y \geq 0 \quad x \geq-1 \quad y \leq x+3 \quad 2 x+y \leq 6
$$

Label the region \mathbf{R}.

- s^{\prime} (O) @1stclassmaths

65 Kenny wants to find out an estimate for the number of fish in a lake.
One day he catches 350 fish from the lake.
He puts a mark on each fish and returns them to the lake.
The next day he catches 175 fish from the lake.
He finds that 70 of these fish have been marked.
(a) Work out an estimate for the total number of fish in the lake.

Kenny returns all the marked fish to the lake.
The following day he catches another 175 fish.
This time he estimates that there are fewer than 700 fish in the lake.
(b) Work out the lowest possible number of marked fish that Kenny could have caught.

66 Write the following in order of size.
Start with the smallest.
$\begin{array}{llll}2.03^{6} & 7.95^{2} & \sqrt{6500} & \sqrt[3]{124000}\end{array}$

67 The table below shows the number of players that play in each position in a football squad.

Position	Goalkeeper	Defender	Midfielder	Striker
Number of players	3	8	10	5

Each player plays in only one position.
The manager is going to select one player from each position to win an award.
Work out the number of different ways there are to choose one goalkeeper, one defender, one midfielder and one striker.

68 Sketch the graph of $y=\cos x^{\circ}$ for $0 \leq x \leq 360$

69 The grouped frequency table gives information about the money spent, in $£$, by 60 visitors to a supermarket.

Money Spent (£)	Frequency
$0<m \leq 20$	6
$20<m \leq 40$	16
$40<m \leq 60$	29
$60<m \leq 80$	9

(a) Complete the cumulative frequency table.

Money Spent (£)	Cumulative Frequency
$0<m \leq 20$	
$0<m \leq 40$	
$0<m \leq 60$	
$0<m \leq 80$	

(b) On the grid, draw the cumulative frequency graph for this information.

Cumulative
frequency

69 (c) Use your graph to find an estimate for the median amount of money spent in the supermarket by the 60 visitors.

One of the 60 visitors is selected at random to win a prize.
(d) Use your graph to find an estimate for the probability that the visitor selected spent more than $£ 35$.

70 The first two terms of a geometric sequence are shown below

$$
2 \sqrt{5} \quad 10 \sqrt{10}
$$

Work out the difference between the third term and the first term of the sequence.
Give your answer in the form $k \sqrt{5}$, where k is an integer.

71 Nina is drawing the graph of $y=a^{x}$ where a is an integer.
She correctly plots the points for $x=0, x=1$ and $x=2$

(a) Write down the value of a

$$
a=
$$

\qquad
(b) Complete the graph for x values from 0 to 4

\downarrow ㄷㅇ @1stclassmaths

72 The graph of $y=2 x+3$ is shown below.

(a) Draw the graph of $x^{2}+y^{2}=36$ onto the grid above.
(b) Use your graph to find estimates to the solutions of the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=36 \\
& y=2 x+3
\end{aligned}
$$

73 Solve $6 x^{2}=3 x+4$
Give your answers correct to 3 significant figures.

74 Here are the first five terms of a quadratic sequence.

$$
\begin{array}{lllll}
8 & 19 & 34 & 53 & 76
\end{array}
$$

Find an expression, in terms of n, for the nth term of this sequence.
$75 \mathrm{f}(x)=x^{2}-3$
$\mathrm{g}(x)=2 x+1$
$\mathrm{h}(x)=\frac{x+3}{4-x}$
(a) Work out the value of $\mathrm{f}(-5)$
(b) Find $\mathrm{h}^{-1}(x)$

$$
\mathrm{h}^{-1}(x)=. .
$$

(c) Solve $\operatorname{gf}(x)=\mathrm{f}(x)+\mathrm{g}(x)$

76 The table gives information about the time, in minutes, 100 people took to complete a puzzle.

Time $(t$, minutes $)$	Frequency
$0<t \leq 10$	23
$10<t \leq 30$	34
$30<t \leq 35$	38
$35<t \leq 50$	15

On the grid, draw a histogram for this information.

(Total for Question 76 is $\mathbf{3}$ marks)
77 Express $0.13 \dot{6}$ as a fraction in its simplest form.
You must show all your working.

78 (a) Write $x^{2}-8 x+19$ in the form $(x-a)^{2}+b$
(b) Write down the coordinates of the turning point on the curve with equation $y=x^{2}-8 x+19$

79 A bag contains 25 counters that are only red, blue or green.
A counter is taken at random from the bag and its colour is noted.
The counter is not replaced and then a second counter is taken at random from the bag.
The probability that the first counter is red is equal to $\frac{3}{5}$
The probability that the first counter is blue and the second counter is red is equal to $\frac{1}{10}$
Work out the probability that both counters selected are green.

\downarrow
 @1stclassmaths

$80 A B C O$ is sector with centre O.
$O A=11 \mathrm{~cm}$
Angle $C O A=125^{\circ}$
Calculate the area of the shaded region. Give your answer to 1 decimal place.

cm^{2}

81 Work out the value of $\left(\sin 60^{\circ}+\sin 90^{\circ}\right)\left(\cos 0^{\circ}-\cos 30^{\circ}\right)$
$82 x$ is directly proportional to y
y is inversely proportional to z^{2}
Given that $x=1$ and $y=4$ when $z=3$
find the value of x when $z=\sqrt{6}$
\qquad

83 The straight line $\mathbf{L}_{\mathbf{1}}$ has the equation $6 y=25-9 x$
The line $\mathbf{L}_{\mathbf{1}}$ passes through the point A with coordinates (k, k).
(a) Work out the value of k.

$$
k=.
$$

\qquad
The point B has coordinates $(7.5,8)$
The straight line $\mathbf{L}_{\mathbf{2}}$ is perpendicular to line $\mathbf{L}_{\mathbf{1}}$ and passes through point B.
(b) Work out the equation of the line $\mathbf{L}_{\mathbf{2}}$

- $\boldsymbol{1}$ (0) 1 stclassmaths

84 (a) Show that the equation $x^{3}-2 x-6=0$ has a solution between $x=2$ and $x=3$
(b) Show that the equation $x^{3}-2 x-6=0$ can be rearranged to give $x=\sqrt[3]{2 x+6}$
(c) Starting with $x_{0}=2$, use the iteration formula $x_{n+1}=\sqrt[3]{2 x_{n}+6}$ three times to find an estimate for the solution of $\quad x^{3}-2 x-6=0$
(d) By substituting your answer to part (c) into $x^{3}-2 x-6$ comment on the accuracy of your estimate for the solution to $x^{3}-2 x-6=0$

85 The histogram shows information about the time, in minutes, students at a school spent revising for their mock exams.

Frequency Density

Time spent revising (minutes)
(a) Work out how many of the students revised for more than 1 hour.
(b) Work out an estimate for the interquartile range of the times spent revising.

\rightarrow ㄷ \boldsymbol{j} @ 0 1stclassmaths

$86 A B C D$ is a trapezium with $A B$ parallel to $D C$.

(a) Work out the length of $A D$.

Give your answer to 1 decimal place.
(b) Work out the length of $B C$.

Give your answer to 1 decimal place.
$87 A B C D E F G H$ is a cuboid.

Work out the value of x.
Give your answer to 3 significant figures.

$$
x=
$$

\qquad
$88 a=\frac{v^{2}}{r}$
$v=3.5$ correct to 1 decimal place.
$r=0.08$ correct to 1 significant figure.
Work out the upper bound and the lower bound for the value of a.
Give your answers to 6 significant figures.
You must show all your working.
upper bound $=$ \qquad
lower bound $=$ \qquad
$89 a$ and b are consecutive integers.
Prove algebraically that $a^{3}+a b+b^{3}$ is an odd number.

90 Solve $3 x^{2}-2 x-5<0$

91 The table below shows information about three solid shapes A, B and C that are similar.

	Shape A	Shape B	Shape C
Height (cm)		18	63
Surface Area $\left(\mathbf{c m}^{2}\right)$	320	720	
Volume $\left(\mathrm{cm}^{3}\right)$	1152		

Complete the table

92 A triangle has side lengths $9 \mathrm{~cm}, 10 \mathrm{~cm}$ and 11 cm .
The interior angles of the triangle are A°, B° and C° where $A^{\circ}<B^{\circ}<C^{\circ}$
Show that $\cos \left(A^{\circ}\right)=\frac{7}{11}$

\downarrow - ${ }^{\boldsymbol{j}}$ @1stclassmaths

$93 A, B, C$ and D are points on the circumference of a circle with centre O. $E F$ is the tangent to the circle at point D.

Angle $A C D=84^{\circ}$
Angle $C D F=53^{\circ}$
Work out the size of angle $A B C$.
Give reasons for each stage of your working.

通 @

94

$A=(-4,-1)$
$B=(-1,-1)$
$C=(-2,-2)$
$D=(-3,-2)$

Trapezium $A B C D$ is transformed.
(a) Describe a single transformation where points C and D are invariant, and points A and B are not.
\qquad
\qquad
\qquad
(b) Describe a single transformation where point B is invariant, and points A, C and D are not.
\qquad
\qquad

- ㄷ (

95 Solve $\frac{x}{x+5}-\frac{2}{x-1}=-1$

96 Ship A and Ship B are both travelling to the same port.
Ship A travels directly to the port on a bearing of 070°
Ship B travels directly to the port on a bearing of 020°
The distance from Ship B to the port is 35 km .
The distance between Ship A and Ship B is 30 km .
Find the bearing of Ship B from Ship A.
Give your answer to 1 decimal place.

- $\mathrm{y}^{\mathbf{\gamma}}$ @ @1stclassmaths

97 A go-kart moves from rest.

The graph gives information about the speed, v metres per second, of the go-kart t seconds after it starts to move.

(a) Work out an estimate for the acceleration of the go-kart at $t=10$
\qquad $\mathrm{m} / \mathrm{s}^{2}$
(b) Work out an estimate for the distance the go-kart travels in the first 15 seconds of its journey. Use 3 strips of equal width.

98 Show that $\frac{6-\sqrt{500}}{\sqrt{5}+1}$ can be written in the form $a \sqrt{5}-b$, where a and b are integers.

99 Find the coordinates of the turning point on the curve with equation $y=2 x^{2}+12 x-7$
You must show all your working

DODeesscasmans

100 Write $\frac{9 x^{2}-100}{3 x^{2}+13 x+10} \div \frac{6 x^{2}-20 x}{5 x^{2}-5}+2 x^{-1} \quad$ in the form $\frac{a x+b}{c x}$ where a, b and c are integers.

$101 \mathbf{C}$ is a graph with equation $x^{2}-y^{2}=48$
\mathbf{L} is a straight line with equation $x-3 y=4$
Using algebra, find the coordinates of the points of intersection of \mathbf{C} and \mathbf{L}. You must show all your working.
\qquad

102 The graph of $y=\mathrm{f}(x)$ is shown on the grid.

(a) On the grid, draw the graph with equation $y=-\mathrm{f}(x)$

A curve \mathbf{M} with the equation $y=7-2 x^{2}$ is transformed by the vector $\binom{-3}{8}$ to give the curve \mathbf{N}.
(b) Find the equation of the curve \mathbf{N}.

Give your answer in the form $y=a x^{2}+b x+c$ where a, b and c are integers.

103 The diagram shows a circle, centre O.

The tangent to the circle at point $B(5,2)$ intersects the y-axis at point A and the x-axis at point C.
(a) Work out the equation of the line $A C$.

Give your answer in the form $a x+b y=c$ where a, b and c are integers.
(b) Work out the area of triangle $A O C$.

$104 A, B$ and C are points on the circumference of a circle, centre O.

$O A$ is parallel to $C B$.
Prove that Angle $B C O+$ Angle $C A B=90^{\circ}$

105 A super car is travelling at a constant speed of 200 mph . The driver applies the brakes to slow the vehicle down.

The speed of the car n seconds after the brakes are applied is S_{n}
The speed of the car $(n+1)$ seconds after the brakes are applied, S_{n+1}, is given by

$$
S_{n+1}=0.8\left(S_{n}-K\right) \text { where } K \text { is a constant. }
$$

The cars speed falls by 54% in the first two seconds after the brakes are applied.
Work out the speed of the car three 3 seconds the brakes were applied.
mph
$106 A B D C$ and $C D F E$ are trapeziums where $A B, C D$ and $E F$ are parallel lines.

(a) Write down the vector $\overrightarrow{A D}$ in terms of \mathbf{a} and \mathbf{b}.
$A B: C D: E F=4: 3: 17$
$B D$ is parallel to $C E$
$A D F$ is a straight line.
$A D: D F=1: k$
(b) Work out the value of k.
\qquad

