AN ME	REVISE THIS	CHECK YOUR ANSWERS	
180 students c The results are	ompleted a maths assessment. The n e summarised in the box plot below.	naximum mark for the assessment	was 100.
	× × 0 20 40 Test Sco	$\begin{array}{c} \hline \\ \hline $	
(a) Write dow	n the median test score.		(1)
(b) Find the ra	ange of the test scores.		(1)
(c) Find the in	nterquartile range of the test scores.		(1)
(d) State the r	neaning of the \times symbols shown on	the box plot.	(1)
One of the stu	dents is selected at random. Eric say	S	
"the probabilit that the studer	y that the student scored between 40 t scored between 60 and 80 marks.") and 60 marks is the same the prob	oability
(e) Explain ho	w you know that Eric must be incor	rect.	(1)

Race Position	1	2	3	4	5	6	7	
Time (seconds)	9.58	9.71	9.84	9.93	9.93	10.00	10.00	1
(a) Calculate the in	nterquartile	range of t	he race tin	nes.				(
(b) Calculate, to 3	decimal pla	aces, the m	nean race t	ime.				(
(c) Calculate, to 3	decimal pla	aces, the st	tandard de	viation of	the race tin	mes.		(
Hannah defines a ra	ace time an	outlier if	it falls eith	er				
more than 1 more than 1	1.5 × (inter 1.5 × (inter	quartile ra quartile ra	nge) abov nge) belov	e the uppe w the lowe	r quartile o r quartile.	or		
(d) Determine if an	y of the ra	ce times a	re conside	red outlier	s using Ha	nnah's dei	finition.	(
Ross defines a race	time an ou	ıtlier if it fa	alls either					
more than 2 more than 2	2 × (standa 2 × (standa	rd deviation rd deviation	on) above on) below	the mean c the mean.	or			
(e) Determine if any	v of the rac	e times ar	e consider	ed outliers	using Ros	s' definiti	on	(
				T)	otal for Q	Duestion 2	is 7 mark	s)

P V 0 0 @1stclassmaths

3 The table below shows the ages of 30 players in a football squad.

	24	24	24	24	25	25	26	27	28	29	29	31	33	35	36	
And	utliar	ic onv	volue	that f		thor										
All C	Juiner	15 ally	value			4:1		1 4	1							
	m	ore the	in 1.5 in 1.5	\times (interview) × (interview)	erquar	tile rai	nge) a nge) b	elow t	the lov	ver qu	artile.	or				
(a) s	Show	that th	e ages	s two c	of the	player	s in th	e foot	ball so	quad a	re con	sidere	ed outl	iers.		(3
(b)]	Draw	a box j	plot fo	or the a	ages o	f the p	layers	5.								(2
	You s	hould	indica	te out	liers w	vith a	×									
				5		20		25				35				
	1					20		2.5 2.5 2.5 2.5	ars)			35				

🕨 🔀 👩 @1stclassmaths

A college tracks lateness to school to the nearest minute.Students that are early or on time are considered to have 0 minutes of lateness.

A sample of 20 students from Year 12 and 20 students from Year 13 were taken on Monday.

The number of minutes lateness to school for the Year 12 students (x) is summarised below.

$$\sum x = 72 \qquad \qquad \sum x^2 = 1048$$

(a) Calculate, to 1 decimal place, the mean and standard deviation of the lateness for Year 12 students.

An outlier is any value that falls either

more than $2 \times$ (standard deviation) above the mean or more than $2 \times$ (standard deviation) below the mean.

The students in Year 12 who were the latest to school are

Merry (13 minutes late) and Perry (26 minutes late)

(b) Show that Perry's lateness is the **only** outlier from the sample of 20 students in Year 12. (3)

The box plot below shows the lateness to school for the Year 13 students (y)

Solutions a

www.1stclassmaths.com

4

© 2025 1stclassmaths

	(Total for Qu	estion 4 is 10 marks)
st		
-		63
3		
<u>ww.1stclassmaths.com</u>	© 2025 1stclassmaths	Solutions #

6 A driving instructor recorded the number of lessons before each of their learners were ready to take their driving test in 2023.

The box plot below shows the lower quartile, median and upper quartile for this data.

An outlier is any value that falls either

more than $1.5 \times$ (interquartile range) above the upper quartile or more than $1.5 \times$ (interquartile range) below the lower quartile.

The learners with the greatest and least number of lessons are shown below.

Learner	А	В	C	D	Е	F
Number of Lessons	14	24	25	72	80	85

(a) (i) Determine which of the values above are outliers.

(ii) Hence, complete the box plot on the next page for the number of lessons. (2)

The driving instructor also recorded the number of lessons their learners had before they were ready to take their test in 2024. The 2024 data is summarised below.

Q_1	Q_2	Q_3
38	41	50

(b) Compare the number of lessons before learners were ready to take their driving test in 2023 and 2024. (2)

(2)

www.1stclassmaths.com

7

© 2025 1stclassmaths

10	30 50 70 90
	Number of lessons
SU	(Total for Question 6 is 6 marks)
8	
www.lateleasmaths.com	© 2025 1stolossmoths

🕨 🔀 🚺 👩 @1stclassmaths

7 A student recorded the sound level (S, dB) in a town centre every minute between 7am and 7pm. The results are summarised in the table below.

Sound level (S, dB)	Frequency (f)	Midpoint (<i>S</i> , dB)
$40 \le S < 50$	99	45
$50 \le S < 60$	162	55
$60 \le S < 70$	132	65
$70 \le S < 80$	129	75
$80 \le S < 90$	120	85
$90 \le S < 100$	78	95

You may use $\sum fS = 49230$ and $\sum fS^2 = 3544800$

(1)

(a) Calculate, to 3 decimal places, an estimate for the mean sound level.

(b) Calculate, to 3 decimal places, an estimate for the standard deviation of the sound levels. (2)

An outlier is any value that falls either

more than $2 \times$ (standard deviation) above the mean or more than $2 \times$ (standard deviation) below the mean.

The minimum sound level recorded was 41 dB. The maximum sound level recorded was 98 dB.

(c) Use your answers to parts (a) and (b) to show that none of the sound levels are outliers.	(2)
(d) Use linear interpolation to calculate estimates for the lower quartile, median and upper quartile for the sound levels.	(4)

Another way to define an outlier is any value that falls either

more than $1.5 \times$ (interquartile range) above the upper quartile or more than $1.5 \times$ (interquartile range) below the lower quartile.

- (e) (i) Show that none of the sound levels were outliers using this definition. (2) (2)
- (ii) Draw a box plot for the sound levels.

www.1stclassmaths.com

9

© 2025 1stclassmaths

Solutions

			<u></u>
	40 50		'U 100
		Sound level (S, dB)	
Ist			
		(Total for Q	uestion 7 is 13 marks)
	10		r
	10		
n an e tra			
w. 1 stcla	ssmaths.com	© 2025 1stclassmaths	Solutions i

The grouped frequency table gives information about the fuel efficiency (F, miles per gallon)8 of 80 different vehicles.

(r mies per ş	ency gallon)	$20 \le F < 30$	$30 \le F < 40$	$40 \le F < 50$	$50 \le F < 60$	$60 \le F <$
Frequency		15	21	19	17	8
(a) On the grid	l, draw th	e cumulative fr	equency graph	for this informa	ition.	
	90					
	80-					
	70-					
	60-					
Cumulative frequency	50-					
nequency	40-					
	30-					
	20-					
	10-					
	0			<u>1</u> 1		
	20	30 Fi	40 uel Efficiency (50 $60E miles per gall$	/0 01)	
 (b) Use your c (i) the medi (ii) the upp (iii) the 80^{tl} (iv) the 15^{tl} 	umulativ ian er quartil ^h percenti	e frequency dia e ile	gram to estimat	e		

