

3D Trig/Pythagoras

REVISE THIS **TOPIC**

1 *ABCDEFGH* is a cube.

BF = 9 cm

(a) Work out the length of AC giving your answer to 1 decimal place.

$$AC^{2} = AB^{2} + BC^{2}$$

 $AC^{2} = 9^{2} + 9^{2}$
 $AC^{2} = 162$

(b) Work out the length of CE giving your answer to 1 decimal place.

$$CE^{2} = AC^{2} + CE^{2}$$

 $CE^{2} = (\sqrt{162})^{2} + 9^{2}$
 $CE^{2} = 243$
 $CE = \sqrt{243}$
 $CE = 15.5884...$

(Total for Question 1 is 4 marks)

$$BC = 24 \text{ cm}$$

$$CD = 10 \text{ cm}$$

$$DH = 9 \text{ cm}$$

(a) Work out the length of BD.

$$BD^2 = BC^2 + CD^2$$

 $BD^2 = 24^2 + 10^2$
 $BD^2 = 676$

$$BD = \sqrt{676}$$

26 cn

(b) Work out the length of BH giving your answer to 1 decimal place.

27 · 5 cm

(c) Work out the size of angle DBH giving your answer to 1 decimal place.

$$sin(x) = \frac{9}{17.5...}$$

$$x = \sin^{-1}(\frac{q}{27.5..})$$

 $x = 19.093...$

(Total for Question 2 is 6 marks)

3 *ABCDEFGH* is a cube.

The surface area of the cube is 3456 cm²

Work out the length of EC giving your answer to 1 decimal place.

$$3456 \div 6 = 576 \text{ cm}^2 \text{ (area of one face)}$$

$$\sqrt{576}$$
 = 24cm (length of one edge)

$$AC^{2} = AB^{2} + BC^{2}$$

 $AC^{2} = 24^{2} + 24^{2}$
 $AC^{2} = 1152$
 $AC = \sqrt{1152}$
 $AC = 33.94...$

$$C^{2} = EC^{2} = AC^{2} + AE^{2}$$

$$EC^{2} = (\sqrt{1152})^{2} + 24^{2}$$

$$EC^{2} = 1728$$

$$EC = \sqrt{1728}$$

$$FC = 41.5692...$$

41.6

(Total for Question 3 is 5 marks)

$$CD = 6 \text{ cm}$$

 $DH = 5 \text{ cm}$
Angle $BDC = 60^{\circ}$

Work out the perimeter of triangle BDH.

$$\cos(60) = \frac{6}{BD}$$

$$BD = \frac{6}{\cos(60)}$$

$$BD = \frac{6}{0.5}$$

$$BH^{2} = BD^{2} + DH^{2}$$

 $BH^{2} = 12^{2} + 5^{2}$
 $BH^{2} = 169$
 $BH = \sqrt{169}$
 $BH = 13 \text{ cm}$

30cm

... cm

(Total for Question 4 is 4 marks)

M is the midpoint of line *EH*.

BC = 30 cm

CD = 12 cm

DH = 19 cm

Work out the length of BM giving your answer to 1 decimal place

$$BQ^2 = BP^2 + PQ^2$$
 $BM^2 = BQ^2 + QM^2$
 $BQ^2 = 15^2 + 12^2$ $BM^2 = (\sqrt{369})^2 + 19^2$
 $BQ^2 = 369$ $BM^2 = 730$
 $BQ = \sqrt{369}$ $BM = \sqrt{730}$
 $BQ = 19.209...$ $BM = 27.0185...$

27.0 cm

(Total for Question 5 is 4 marks)

$$CD = 6 \text{ cm}$$

$$DH = 7 \text{ cm}$$

$$PC = 10 \text{ cm}$$

P is the point on the line AD so that AP : PD = 1 : 2

(a) Work out the length of BC giving your answer to 1 decimal place.

$$PD^{2} = PC^{2} - CD^{2}$$

 $PD = \sqrt{10^{2} - 6^{2}}$
 $PD = 8$

12 cn

(b) Work out the length of BP giving your answer to 1 decimal plac.

$$BP^{2} = BA^{2} + AP^{2}$$

 $BP^{2} = G^{2} + 4^{2}$
 $BP^{2} = 52$

7·2 cm

(c) Work out the size of angle BPF giving your answer to 1 decimal place.

$$tan(x) = \frac{7}{7 \cdot 21 ...}$$

 $x = tan^{-1}(\frac{7}{7 \cdot 21 ...})$
 $x = 44.148 ...$

(Total for Question 6 is 7 marks)

7 *ABCDEFGH* is a cube.

BG = 6 cm

Work out the volume of the cube giving your answer to 1 decimal place.

$$BG^{2} = BC^{2} + CG^{2}$$

$$6^{2} = x^{2} + x^{2}$$

$$36^{2} = 2x^{2} + x^{2}$$

$$18 = x^{2}$$

$$x = \sqrt{18}$$

Volume =
$$\sqrt{18} \times \sqrt{18} \times \sqrt{18}$$

= 76.367...

76.4 cm³

(Total for Question 7 is 4 marks)

8 *ABCDE* is a square-based pyramid.

M is the midpoint of the line AC and AC is perpendicular to ME.

$$EC = 53 \text{ cm}$$

 $EM = 45 \text{ cm}$

Work out the volume of the pyramid.

$$MC^{2} = EC^{2} - ME^{2}$$
 $MC^{2} = 53^{2} - 45^{2}$
 $AC^{2} = x^{2} + x^{2}$
 $AC^{2} = x^{2}$

23520

cm³

(Total for Question 8 is 6 marks)

9 ABCDEF is a triangular prism.

$$AB = 18 \text{ cm}$$

$$BC = 22 \text{ cm}$$

Angle
$$BFC = 70^{\circ}$$

(a) Work out the length of AF giving your answer to 1 decimal place.

$$SIN(70) = \frac{22}{BF}$$
 $AF^2 = AB^2 + BF^2$
 $AF^2 = 18^2 + 23 \cdot 4 ...^2$
 $BF = \frac{22}{Sin(70)}$
 $AF^2 = 872 \cdot 11757...$
 $AF = \sqrt{872 \cdot 11757...}$
 $AF = 29.5316...$

(b) Work out the size of the angle between AF and the plane ABCD. Give your answer to 1 decimal place.

$$AC^{2} = AB^{2} + BC^{2}$$

 $AC^{2} = 18^{2} + 22^{2}$
 $AC^{2} = 808$
 $AC = \sqrt{808}$

$$\cos(x) = \frac{\sqrt{808}}{29.53...}$$

$$\cos(x) = 0.9625...$$

$$x = \cos^{-1}(0.9625...)$$

(Total for Question 9 is 8 marks)

$$CD = 3.5 \text{ cm}$$

 $DH = 4.5 \text{ cm}$
Angle $HAD = 38^{\circ}$

(a) Work out the length of AG giving your answer to 1 decimal place.

$$SIN (38) = \frac{4.5}{AH}$$

$$AG^{2} = AH^{2} + HG^{2}$$

$$AG^{2} = 7.309...^{2} + 3.5^{2}$$

$$AG^{2} = 65.674...$$

$$AG^{2} = \sqrt{65.674...}$$

$$AG^{2} = \sqrt{65.674...}$$

$$AG^{2} = 8.1039...$$

(a) Work out the size of the angle between AG and the plane ADHE. Give your answer to 1 decimal place.

$$\sin(x) = \frac{3.5}{8.10...}$$
 $\sin(x) = 0.43188...$
 $x = \sin^{-1}(0.43188...)$
 $x = 25.5873...$

(Total for Question 10 is 6 marks)

11 ABCDEF is a triangular prism.

$$BF = 15 \text{ cm}$$

Angle $CED = 33^{\circ}$
 $BF : BC = 5 : 12$

Work out the size of the angle between *CE* and the plane *ABCD*. Give your answer to 1 decimal place.

$$BC = \frac{15}{5} \times 12$$

$$= 36 \text{ cm}$$

$$FC^{2} = 1521$$

$$= 29$$

$$FC = ED = 39$$

$$Cos(33) = \frac{39}{EC}$$

$$Sin(x) = \frac{15}{46 \cdot 502...}$$

$$EC = \frac{39}{\cos(33)}$$

$$Sin(x) = 0.3225...$$

$$x = \sin^{-1}(0.322...)$$

$$x = 18.81815...$$

18.8

(Total for Question 11 is 6 marks)

12 ABCDE is a square-based pyramid placed on top of cube BCDEFGHI

M is the midpoint of the line *FH* with *FH* perpendicular to *MA*.

FI = 12 cm

AD = 19 cm

Work out the size of the angle between AF and the plane FGHI. Give your answer to 1 decimal place.

$$FH^2 = 12^2 + 12^2$$

 $FH^2 = 288$
 $FH = \sqrt{288}$
 $MH = \sqrt{288} \div 2$
 $MH = 8.485...$

$$\tan(x) = \frac{29}{\sqrt{288 \div 2}} \qquad x = \tan^{-1}(3.417...)$$

$$\tan(x) = 3.4176... \qquad x = 73.6907$$

$$PA^{2} = 12^{2} + 12^{2}$$
 $PA^{2} = 19^{2} - PD^{2}$
 $PA^{2} = 19^{2} - 8.485.2$
 $PA^{2} = 289$
 $PA^{2} = 17$
 $PA^{2} = 17$

$$\sqrt{288 \div 2}$$
 $x = \tan^{-1}(3.417...)$
 $\tan(x) = 3.4176...$ $x = 73.6907...$

(Total for Question 12 is 6 marks)

$$CG : CD : CB = 1 : 2 : 3$$

$$BG = k \text{ cm}$$

Show that the volume of the cuboid can be written in the form $\frac{3\sqrt{a}}{b}k^3$ where a and b are integers.

$$\frac{3\sqrt{a}}{b}k^3$$
 where a and b are integers.

$$3c^{2} + (3x)^{2} = k^{2}$$

$$x^{2} + 9x^{2} = k^{2}$$

$$103c^{2} = k^{2}$$

$$x^{2} = \frac{k^{2}}{10}$$

$$x = \frac{k}{\sqrt{10}}$$

$$x = \frac{k\sqrt{10}}{10}$$

Volume =
$$x \times 2x \times 3x$$

= $6x^3$
= $6 \times \left(\frac{k\sqrt{10}}{10}\right)^3$
= $6 \times \frac{k^3 \times 10\sqrt{10}}{1000}$

$$= \frac{60\sqrt{10} \, k^3}{1000}$$
$$= \frac{3\sqrt{10} \, k^3}{1000}$$

(Total for Question 13 is 6 marks)