Rationalising the Denominator

REVISE THIS TOPIC

Show that $\frac{10}{\sqrt{5}}$ can be written in the form $a\sqrt{b}$ where a and b are integers. [2 marks] Show that $\frac{18}{\sqrt{6}}$ can be written in the form $a\sqrt{b}$ where a and b are integers. [2 marks] Show that $\frac{70}{\sqrt{2}}$ can be written in the form $a\sqrt{b}$ where a and b are integers. [2 marks]							
Show that $\frac{70}{\sqrt{2}}$ can be written in the form $a\sqrt{b}$ where a and b are integers.	Show that	<u>10</u> √5	can be writter	n in the form	$a\sqrt{b}$	where a and b are in	tegers. [2 marks]
Show that $\frac{70}{\sqrt{2}}$ can be written in the form $a\sqrt{b}$ where a and b are integers. [2 marks]	Show that	<u>18</u> √6	can be written	in the form	$a\sqrt{b}$	where a and b are int	tegers. [2 marks]
	Show that	$\frac{70}{\sqrt{2}}$	can be written	in the form	$a\sqrt{b}$	where a and b are int	egers. [2 marks]

Show that $\frac{20}{\sqrt{10}}$ can be written in the form $a\sqrt{b}$ where a and b are integers. [2 marks]

5	Show that $\frac{2}{}$	2 <u>4</u> can be 15	written in the fo	$\frac{a\sqrt{18}}{b}$	where a and b are	integers. [2 marks]
6	Show that $\frac{3}{4}$	$\frac{65}{\sqrt{5}}$ can be	written in the fo	$\frac{a\sqrt{5}}{b}$	- where a and b are in	ntegers. [2 marks]
7	Show that $\frac{1}{9}$	$\frac{1}{\sqrt{2}}$ can be	written in the fo	$\frac{\sqrt{2}}{a}$	where a and b are in	tegers. [2 marks]
8	Show that $\frac{6}{\sqrt{2}}$	<u>60</u> can be 24	written in the for	m $a\sqrt{b}$	where a and b are int	egers [2 marks]
8	Show that $\frac{6}{\sqrt{2}}$	can be	written in the for	rm a√b	where a and b are int	egers [2 m

Show that $\frac{24}{\sqrt{45}}$ can be written in the form $\frac{a\sqrt{5}}{b}$ where a and b are integers. [2 marks]

10	Show that $\frac{10 - \sqrt{32}}{\sqrt{2}}$ can be written in the form $a\sqrt{2} - b$	
	where a and b are integers.	[3 marks]
11	Show that $\frac{\sqrt{12}+9}{\sqrt{3}}$ can be written in the form $a+b\sqrt{3}$ where a and b are integers.	[3 marks]
12	Show that $\frac{\sqrt{180} + 40}{\sqrt{20}}$ can be written in the form $a + b\sqrt{5}$ where a and b are integers.	[3 marks]

Solutions Solutions

Turn over ▶

13	Show that	$\left(\frac{1}{\sqrt{2}}\right)^5$ c	an be writter	n in the form	$\frac{\sqrt{2}}{a}$ wh	here a is an inte	eger. [3 marks]
14	Show that	$\frac{24}{\sqrt{6}} + \sqrt{54}$	4 can be w	ritten in the fo	orm k√6	where k is an	integer. [3 marks]
15	Show that	$\frac{42}{\sqrt{18}} + \sqrt{20}$	00 can be v	vritten in the	form <i>k√</i> 0	$\bar{\mathfrak{d}}$ where k is a	n integer. [4 marks]

16	Show that	$\frac{21}{\sqrt{2}} + \frac{12}{\sqrt{42}}$	can be written in the form	$k\sqrt{3}$	where k is an integer.
		√3 √48			[3 marks]

17	Show that	$20 \times \sqrt{3\frac{1}{5}}$	can be written in the form	<i>k</i> √5	where k is an integer. [4 marks]

