

SCAN ME

Constant Acceleration Formulae

REVISE THIS TOPIC

CHECK YOUR ANSWERS

1 A car moves along a straight horizontal road passing through points A , B and C .

At $t = 0$, the car passes point A with a velocity of 6 ms^{-1} then accelerates uniformly at 1.5 ms^{-2} for 8 seconds before reaching point B . The car then maintains a constant velocity until it reaches point C .

(a) Find the velocity of the car when $t = 8$ (2)

(b) Find the distance between points A and B (2)

The distance between points B and C is 135 m.

(c) Find the time taken for the car to travel from point A to point C . (2)

1

(Total for Question 1 is 6 marks)

2 A cyclist travels along a straight horizontal road between points C and D .

In the model of the motion, the cyclist starts from rest at point C when $t = 0$, then moves with a constant acceleration of 1.2 ms^{-2} . When $t = 9$, the cyclist arrives at point D .

(a) Find the velocity of the cyclist when they reach point D . (2)

(b) Find the distance between points C and D . (2)

(c) Find the time taken to reach the midpoint of C and D . (3)

(Total for Question 2 is 7 marks)

3 A train travels along a straight horizontal track with uniform acceleration for 30 seconds.

When $t = 4$, the velocity of the train is 18 ms^{-1}

When $t = 24$, the velocity of the train is 34 ms^{-1}

(a) Find the acceleration of the train. (2)

(b) Find the velocity of the train when $t = 0$ (2)

(c) Find the distance travelled by the train in the 30 second journey. (3)

(Total for Question 3 is 7 marks)

4 A cyclist travels along a straight horizontal road.

In the model of the motion, the cyclist is travelling at 9 ms^{-1} when they apply the brakes, causing them to decelerate uniformly. The cyclist comes to rest after travelling 27 m with the brakes applied.

(a) Find the acceleration of the cyclist whilst they are braking. (2)

(b) Find the time taken to come to rest whilst they are braking. (2)

(Total for Question 4 is 4 marks)

5 A bus travels along a straight horizontal road.

In the model of the motion, the bus accelerates uniformly from a velocity of 8.5 ms^{-1} to a velocity of 16.5 ms^{-1} , in 5 seconds. The bus then maintains a constant velocity of 16.5 ms^{-1} for a further 15 seconds.

(a) Find the acceleration of the bus during the first 5 seconds. (2)

(b) Find the total distance travelled by the bus during the 20 second period. (4)

(Total for Question 5 is 6 marks)

6 A runner travels along a straight horizontal track.

In the model of the motion, the runner starts from rest when $t = 0$ before travelling with constant acceleration 1.6 ms^{-2} , until they reach a velocity of 6.4 ms^{-1}

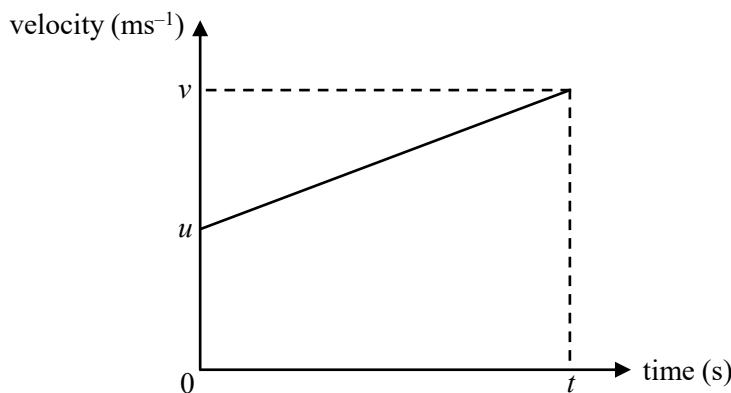
The runner then maintains a constant velocity of 6.4 ms^{-1} until they have travelled a total distance of 500 m.

Show that it takes the runner more than 80 seconds to travel the distance of 500 m.

(Total for Question 6 is 4 marks)

7 A motorcycle travels along a straight horizontal road between points A and B .

In the model of the motion, the motorcycle travels with constant acceleration between points A and B , passing point A with velocity 18 ms^{-1} and point B with velocity 32 ms^{-1}


Given that the distance between A and B is 125 m, find

(a) the acceleration of the motorcycle (2)
(b) the time taken for the motorcycle to travel between points *A* and *B*. (2)

(Total for Question 7 is 4 marks)

Figure 1

Figure 1 shows the velocity-time graph for the motion of the object travelling in a straight line for t seconds.

It has initial velocity $u \text{ ms}^{-1}$, final velocity $v \text{ ms}^{-1}$, and uniform acceleration $a \text{ ms}^{-2}$

(a) Use the graph to show that $v = u + at$ (3)

(b) Use the graph to show that $s = \frac{1}{2}(u + v)t$ (1)

(Total for Question 8 is 4 marks)

9 An object travels in a straight line with constant acceleration $a \text{ ms}^{-2}$ for t seconds.

It has initial velocity $u \text{ ms}^{-1}$ and final velocity $v \text{ ms}^{-1}$

Given that $v = u + at$ and $s = \frac{1}{2}(u + v)t$ show that

$$(a) \quad s = ut + \frac{1}{2}at^2 \quad (3)$$

$$(b) \quad s = vt - \frac{1}{2}at^2 \quad (3)$$

$$(c) \quad v^2 = u^2 + 2as \quad (3)$$

(Total for Question 9 is 9 marks)

10 A train travels along a straight horizontal track.

In the model of the motion, when $t = 0$ the train has travels with uniform acceleration 0.3 ms^{-2} for T seconds, from an initial velocity of 15 ms^{-1} to a velocity of $V \text{ ms}^{-1}$.

At time $t = T$ the train has travelled a total distance of 255 m.

Find the values of V and T .

(Total for Question 10 is 4 marks)

11 A car travels along a straight horizontal road.

In the model of the motion,

- the car travels with constant acceleration
- when $t = 2$, the car has velocity 10 ms^{-1}
- when $t = 8$, the car has travelled a total distance of 104 m

Find the velocity of the car when $t = 9$

(Total for Question 11 is 6 marks)

12 A cyclist travels along a straight horizontal road between points A and B .

In the model of the motion, at $t = 0$ the cyclist passes point A , travelling at 12 ms^{-1} and then accelerates uniformly at 0.5 ms^{-2} for T seconds, reaching a velocity of $V \text{ ms}^{-1}$ when they pass point B .

The distance between A and B is D metres

In the final 2 seconds of the journey the cyclist travels a distance of 34 metres.

Find the values of V , T and D .

(Total for Question 12 is 6 marks)

