
(D)SCAN ME

PRACTICE PAPER FOR

AQA Paper 1H (June 2023)

Disclaimer

In 2022 I wrote a series of predicted papers that in many cases reflected the real exam paper very well. This was due to the exam boards providing advance information on the topics that were going to be in each paper. This information is no longer provided so "predicting" a paper is not possible. Nobody can know what topics and types of questions will come up in each paper, apart from the few examiners that write them.

This paper has been created based on the most common paper 1 topics from previous years. Due to the nature of some topics they are better suited to paper 1 as if you had a calculator they would no longer be difficult to do. The paper should be excellent at helping students revise for exams, however should not be relied upon as the basis for revision. The topics from this paper may well appear in the real exams, however there is absolutely no guarantee of this for the reasons previously mentioned. Some topics may appear, some may not.

Ultimately the best way to prepare for the exams is to revise all topics.

INFORMATION FOR TEACHERS

You will want to remove this page before printing to ensure that questions across a double page print in the correct places.

This paper been produced with careful analysis from previous papers.
The Series percentage below shows the percentage of times that this topic came up across a whole set of 3 papers. Some topics tend to appear almost every year in at least one paper.

The Paper 1 percentage below shows the percentage of times that this topic came up specifically in the non calculator paper. As expected certain topics favour paper 1 over paper 2/3

I hope you find this data interesting/useful!

Topic	Series	Paper 1	Question(s)
Write as a Ratio	70%	30%	1
Application of Ratio	90%	50%	1,8
Standard Form	100%	70%	2
Fraction Operations	60%	50%	3
Linear Inequalities	80%	50%	4
Column Vectors	70%	30%	5
Approximations	40%	40%	6
Volume of 3D shapes	100%	40%	6,9
Linear Simultaneous Equations	70%	50%	7
Circles and Sectors	90%	70%	8
Solve Quadratic Equation	90%	50%	10
Cumulative Frequency	90%	70%	11
Box Plots	90%	30%	11
Transformations	90%	50%	12
Gradients/Rate of Change	100%	50%	13
Algebraic Fractions	90%	60%	14
Change the Subject	80%	30%	14
Direct and Inverse Proportion	90%	40%	15
Probability of Successive Events	80%	30%	16
Sequences	100%	80%	17
Surds	100%	90%	$18,21,22$
Venn Diagrams	100%	60%	19
Transformations of Graphs	60%	40%	20
Completing the Square	70%	30%	21
Exact Trig Values	90%	90%	22
Index Laws	100%	100%	22

Answer all questions in the spaces provided.

1 (a) Write the ratio 7:20 in the form $n: 1$

Answer

\qquad : \qquad

1 (b) Divide 160 in the ratio $2: 3: 5$

Answer

\qquad : \qquad :

2
2 Put these numbers in order from smallest to largest.

$$
55 \times 10^{5} \quad 6 \times 10^{5} \quad 7 \times 10^{-7} \quad 5 \times 10^{6}
$$

\qquad
\qquad
\qquad

Smallest \qquad
\qquad
\qquad

Largest \qquad

3 Work out the mean of $2 \frac{1}{2}, \frac{2}{3}$ and $\frac{1}{6}$

Give your answer as a mixed number.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

4 (a) $w=10-x$
x is an integer where $10<4 x<40$
Work out the greatest possible value for w.
\qquad
\qquad
\qquad
\qquad

Answer

4 (b) In fact x is not an integer.
What affect does this have on the greatest possible value for w ?

The greatest value for w increases

The greatest value for w decreases

The greatest value for w stays the same

Give a reason for your answer.
[2 marks]
\qquad
\qquad
\qquad
\qquad

5 (a) $\quad \mathbf{a}=\binom{6}{2} \quad \mathbf{b}=\binom{-3}{1}$

Work out $\mathbf{a}-3 \mathbf{b}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

5 (b) Another vector, c, is parallel to vector a but twice the length.
Write down two vectors that could represent vector c.
\qquad
\qquad
\qquad
\qquad

6 Here is a cylindrical container.

The container is filled with water at a rate of 0.2 litres per second.
Show that the container will be completely filled in approximately 1 minute.
$1 \mathrm{~cm}^{3}=1 \mathrm{ml}$
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& 5 x+2 y=18 \\
& 3 x-2 y=14
\end{aligned}
$$

Answer
$8 \quad A B C D$ is a rectangle

$A B=32 \mathrm{~cm}$
$D E, E F$ and $F C$ are diameters of semicircles.
$D E: E F: F C=5: 2: 1$
Work out the shaded area giving your answer in terms of π
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
cm^{2}
$9 \quad$ Here is a cube and a cuboid.

The volume of the cube is equal to 40% of the volume of the cuboid.
Calculate the length, l, of the cuboid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer cm

10
Solve $(3-5 x)(x+1)=0$
\qquad
\qquad
\qquad

Answer

11 The cumulative frequency diagram shows information about the waiting times, t, in hours of 100 patients a hospital emergency department during March.

11 (a) Estimate the interquartile range of the waiting times in hours.
[2 marks]
Cumulative frequency

Wait time, t, (hours)
\qquad
\qquad
\qquad

Answer
hours

11 (b) During April, the hospital recruits more staff to try and reduce the average waiting time.

The box plot below shows the waiting times of 100 patients during April.

April

What affect did the extra staff recruited have on the average wait time? Tick a box.

The average wait time increased

The average wait time increased

The average wait time remained unchanged

You must give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

12 Enlarge shape A by scale factor $-1 \frac{1}{2}$ with centre of enlargement $(8,6)$

13 The diagram below shows the amount of water in a bathtub as it fills.

The bathtub is initially empty.
During the first 10 minutes the cold tap is turned on fully but the hot tap is off.
Between 10 and 20 minutes both the cold and hot taps are turned on fully.
Work out the rate at which the hot tap only fills the bathtub.
[3 marks]
\qquad
\qquad
\qquad
\qquad

Answer
litres per minute

14 (a) Simplify fully $\frac{2 x^{2}-4 x y}{x^{2}-4 y^{2}}$

Answer

14 (b) Rearrange $y-b^{-1}=x$ to make b the subject
\qquad

Answer

15 Theresa needs to collect the wheat from her fields.
She knows that the time is takes to collect the wheat is inversely proportional to the number of workers that she employs.

Last year the Theresa employed 3 workers and it took them 20 days to collect all the wheat.

This year Theresa employs 4 workers.
The 4 workers collect wheat for 6 days before one of them falls ill.
How many more days will it take the remaining 3 workers to collect all of the wheat?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer
\qquad

16 A bag contains the following numbered counters.
(1) (1) (1) 2 (2) 3

A counter is taken from the bag at random and not replaced.
A second counter is then taken from the bag at random.
Calculate the probability that the number of the first counter taken is a factor of the number of the second counter taken.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

17 The first 4 terms of a quadratic sequence are shown below
1
12
27
46

Work out an expression for the nth term of the sequence
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

18 Write $\frac{77}{\sqrt{7}}-\sqrt{175}$ in the form $k \sqrt{7}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

1980 students were as asked if they study History or Geography.
15% of the students study both History and Geography.
$\frac{1}{3}$ of the students who study History also study Geography.
$\frac{2}{5}$ of the students who study Geography also study History.
Work out the number of students who study neither subject.
You may use the Venn Diagram below to help with your answer.
[4 marks]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

20 Here is a sketch of the graph $y=x^{3}$

The graph is translated by the vector $\binom{2}{5}$ to give a new graph.

The new graph has equation $a x^{3}+b x^{2}+c x+d$
Work out the values of a, b, c and d.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $a=\square \quad b=\square \quad d=$

21 The equation of a curve is $y=x^{2}-\sqrt{3} x+1$
By completing the square, work out the coordinates of the turning point.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (, _)

22 Solve $x^{0.25}=\frac{\cos \left(45^{\circ}\right)}{\cos \left(30^{\circ}\right)}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

