The Sine Rule

SCAN ME

REVISE THIS

 TOPIC1 Here is triangle $A B C$.

Work out the length of $A B$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\frac{x}{\sin (24)} & =\frac{11}{\sin (75)} \\
x & =\frac{11 \sin (24)}{\sin (75)}
\end{aligned}
$$

2 Here is triangle $A B C$.

Work out the length of $B C$.

Give your answer to 1 decimal place.

$$
\begin{aligned}
\frac{x}{\sin (81)} & =\frac{6}{\sin (51)} \\
x & =\frac{6 \sin (81)}{\sin (51)}
\end{aligned}
$$

3 Here is triangle $A B C$.

Work out the size of angle $B A C$.
Give your answer to 1 decimal place.

$$
\begin{array}{ll}
\frac{\sin (x)}{14}=\frac{\sin (77)}{20} & \sin (x)=0.68205 \ldots \\
\sin (x)=\frac{14 \sin (77)}{20} & x=\sin ^{-1}(0.6820 \ldots)
\end{array}
$$

(Total for Question 3 is $\mathbf{3}$ marks)
4 Here is triangle $A B C$.

5 Here is triangle $A B C$.

Work out the length of $A C$.
Give your answer to 1 decimal place.

$$
\begin{aligned}
\frac{x}{\sin (129)} & =\frac{22}{\sin (19)} \\
x & =\frac{22 \sin (129)}{\sin (19)}
\end{aligned}
$$

6 Here is triangle $A B C$.

Work out the size of angle $B C A$.
Give your answer to 1 decimal place.

$$
\begin{array}{rr}
\frac{\sin (x)}{12}=\frac{\sin (85)}{13} & \sin (x)=0.919564 \ldots \\
\sin (x)=\frac{12 \sin (85)}{13} & x=\sin ^{-1}(0.91956 \ldots) \\
& 66
\end{array}
$$

7 Here is triangle $A B C$.

Work out the size of angle $A B C$.
Give your answer to 1 decimal place.

$$
\begin{array}{ll}
\frac{\sin (x)}{18}=\frac{\sin (44)}{14} & \sin (x)=0.89313 \ldots \\
\sin (x)=\frac{18 \sin (44)}{14} & x=\sin ^{-1}(0.89313 \ldots) \\
x=63.2695 \ldots
\end{array}
$$

x is obtuse so $180-63.2695 \ldots$ \qquad
(Total for Question 7 is $\mathbf{3}$ marks)
8 Here is triangle $A B C$.

Work out the length of $A B$.
Give your answer in the form $k \sqrt{6}$, where k is an integer.

$$
\begin{array}{c|l}
\frac{x}{\sin (45)}=\frac{9}{\sin (60)} & x=\frac{9 \sqrt{2}}{2} \times \frac{2}{\sqrt{3}} \\
x=\frac{9 \sin (45)}{\sin (60)} & x=\frac{9 \sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
x=\frac{9 \times \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}} & x=\frac{9 \sqrt{6}}{3} \quad 3 \quad 3 \sqrt{6} \\
\text { (Total for Question } 8 \text { is } 4 \text { marks) }
\end{array}
$$

$9 \quad A B C$ and $B C D$ are triangles.

The area of triangle $A B C$ is $154 \mathrm{~cm}^{2}$
Work out the size of angle $A B D$.

$$
\begin{aligned}
\frac{1}{2} \times 14 \times h & =154 \\
7 h & =154 \\
h & =22 \mathrm{~cm} \\
\frac{\sin (x)}{12} & =\frac{\sin (73)}{22} \quad \tan (y)=\frac{14}{22} \\
\sin (x) & =\frac{12 \sin (73)}{22} \quad y=\tan ^{-1}\left(\frac{14}{22}\right) \\
\sin (x) & =0.5216 \ldots \\
x & =\sin ^{-1}(0.5216 \ldots) \\
x & =31.441 \ldots
\end{aligned} \quad y=32.47 \ldots
$$

(Total for Question 9 is 5 marks)
@1stclassmaths
$10 A B C D E$ is a regular pentagon $A E F$ and $C D G$ are triangles.
$F E D G$ is a straight line.

Work out the size of angle $C G D$.

$$
\begin{array}{r}
\text { angle } A E F=\text { angle } C D G=\frac{360}{5}=72^{\circ} \\
\frac{y}{\sin (62)}=\frac{8}{\sin (72)} \quad \frac{\sin (x)}{7.427 \ldots}=\frac{\sin (72)}{20} \\
y=\frac{8 \sin (62)}{\sin (72)}
\end{array} \quad \sin (x)=\frac{7.42 \sin (72)}{20} . \quad \begin{array}{rr}
y=7.427 \ldots & \sin (x)=0.35317 \ldots \\
& x=\sin ^{-1}(0.35317 \ldots) \\
x=20.68188298
\end{array}
$$

$11 A B C$ is a triangle.
$A B D$ is a sector with centre A.

Work out the area of sector $A B D$.

$$
\begin{array}{ll}
\frac{\sin (x)}{15}=\frac{\sin (32)}{9} & \sin (x)=0.8831 \ldots \\
x=\sin ^{-1}(0.8831 \ldots) \\
\sin (x)=\frac{15 \sin (32)}{9} & x=62.0306 \ldots
\end{array}
$$

$$
\begin{aligned}
\text { Area } & =\frac{62.03 \ldots}{360} \times \pi \times 9^{2} \\
& =43.8468971
\end{aligned}
$$

