

REVISE THIS TOPIC

1 To the nearest pound, Eric has $£ 8.00$
To the nearest 10p, Nicky has $£ 1.60$
(a) Work out the maximum possible total amount of money.
(b) Eric buys a new phone case.

The phone case costs $£ 2.50$ (to the nearest 50p).
Work out the maximum amount of money that Eric could have left after buying the phone case.

- $\mathrm{y}^{\mathbf{\gamma}}$ @ @1stclassmaths

2 To 2 significant figures, the capacity of a can of drink is 330 ml A multipack contains 24 cans of drink.
(a) Work out the upper bound for the capacity of the multipack of cans.
\qquad
(b) Work out the lower bound for the capacity of the multipack of cans.
\qquad
(c) Arya opens one of the cans of drink.

She drinks 72 ml (to the nearest ml) of the drink.
Work out the lower bound for the amount of drink that could be left in the can.

(3)

3 A stadium contains 32000 fans (to 2 significant figures).
On average, each fan spends $£ 3.50$ (to the nearest 50 p) at the stadium.
(a) Work out the upper bound for the total amount of money spent.
£ \qquad
(b) Work out the lower bound for the total amount of money spent.
£ \qquad
(c) At half time 30% (to the nearest 10%) of the fans leave the stadium.

Work out the lower bound for the number of fans that leave the stadium.

4 The dimensions of a rectangle are shown to the nearest metre.

(a) Work out the upper bound for the area of the rectangle.
\qquad cm^{2}
(b) Work out the lower bound for the perimeter of the rectangle.

シーか＠＠stassmats

5 To 1 decimal place，the radius of a circle is 6.5 cm ．
（a）Work out the lower bound for the area of the circle．
\qquad cm^{2}
（b）Work out the upper bound for the circumference of the circle．
$6 x=700$（to 1 significant figure）
$y=84$（to the nearest integer）
Work out the upper bound for $2 x+y$

7 Jacob invest $£ 600$ (to 1 significant figure) in a bank for 4 years.
The bank pays compound interest at 3.2% (to 1 decimal place).
Work out the upper and lower bound for the total amount of money that Jacob has in his account after 4 years.

Upper Bound $£$ \qquad

Lower Bound $£$ \qquad

8 The interior angle of a regular polygon is 150° (correct to 2 significant figures).
Work out the maximum and minimum number of sides of the regular polygon.

Maximum

\qquad

- d (1 1stlassmans

9 Box A has a mass of 800 kg (to the nearest 100 kg)
Box B has a mass of 600 kg (to the nearest 100 kg)
Box C has a mass of 1500 kg (to the nearest 100 kg)
A lorry can safely carry a load of 3 tonnes. [1 tonne $=1000 \mathrm{~kg}]$
The lorry driver says:
"I can be sure that I can carry all three boxes safely as $800 \mathrm{~kg}+600 \mathrm{~kg}+1500 \mathrm{~kg}=2900 \mathrm{~kg}$ " Is the lorry driver correct? Give reasons for your answer.
$10 p=3.9$ (to 1 decimal place)
$q=0.33$ (to 2 decimal places)
Work out the lower bound for $\frac{p^{2}}{q}$
Give your answer to 6 significant figures.

\downarrow
 0

11 The dimensions of a cuboid are shown to the nearest metre.

The outside surfaces of the cuboid are to be painted.
Each tin of paint covers $28 \mathrm{~m}^{2}$ (to the nearest square metre).
Show clearly that 6 tins of paint may not be enough to paint the outside surfaces.

12 The dimensions of a triangle are shown to the nearest 0.1 m

Show clearly that angle $A B C$ cannot be a right angle.

13 The dimensions of a cylinder are shown to the nearest metre.

The cylinder exerts a force of 8×10^{5} Newtons (to 1 significant figure) onto a floor.
Calculate the lower bound for the pressure between the cylinder and the floor.
Give your answer to 5 significant figures.

\downarrow - $\mathbf{~}$ @ 0 stclassmaths

$14 k=\sqrt{\frac{a-b}{c}}$
$a=430$ (to 2 significant figures)
$b=320$ (to 2 significant figures)
$c=0.07$ (to 1 significant figure)
By considering bounds, work out the value of k to a suitable degree of accuracy.
Give a reason for your answer.
$15 y=\frac{m+n}{6-h}$
$m=9.8$ (to 1 decimal place)
$n=4.4$ (to 1 decimal place)
$h=5.41$ (to 2 decimal places)
By considering bounds, work out the value of y to a suitable degree of accuracy.
Give a reason for your answer.

シリ(0@Itchasmans

16 A container is in the shape of a hemisphere
The radius of the hemisphere is 26 cm (to the nearest centimetre).

Liquid fills the hemisphere at a constant rate.
The constant rate $=550 \mathrm{ml}$ (to the nearest 50 ml$)$ per minute.

Show that it takes at least 1 hour to fill the hemisphere.

