

Trigonometry SOHCAHTOA

REVISE THIS TOPIC

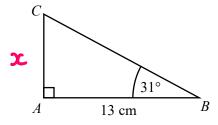
1 *ABC* is a right-angled triangle.

Calculate the length of AB.

Give your answer correct to 3 significant figures.

$$\cos(28) = \frac{x}{8}$$

$$8 \times \cos(28) = x$$


$$x = 7.063580743$$

7.06

cm

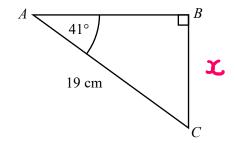
(Total for Question 1 is 2 marks)

2 *ABC* is a right-angled triangle.

Calculate the length of *AC*.

Give your answer correct to 3 significant figures.

$$\tan(31) = \frac{x}{13}$$


$$13 \times \tan(31) = x$$

7.81

.. cm

(Total for Question 2 is 2 marks)

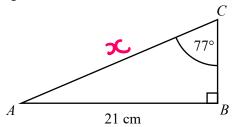
3 *ABC* is a right-angled triangle.

Calculate the length of BC.

Give your answer correct to 3 significant figures.

$$Sin(41) = \frac{x}{19}$$

$$19x Sin(41) = x$$


$$x = 12.46512155$$

12.5

..... cm

(Total for Question 3 is 2 marks)

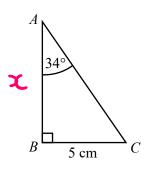
4 *ABC* is a right-angled triangle.

Calculate the length of AC.

Give your answer correct to 3 significant figures.

$$\sin(77) = \frac{21}{x}$$

$$x = \frac{21}{\sin(77)}$$


$$x = 21.55238626$$

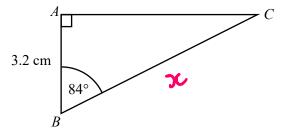
21.6

(Total for Question 4 is 2 marks)

5 *ABC* is a right-angled triangle.

Calculate the length of *AB*.

Give your answer correct to 3 significant figures.


$$\tan(3t) = \frac{5}{x}$$

$$\chi = \frac{5}{\tan(34)}$$

7.41

(Total for Question 5 is 2 marks)

6 ABC is a right-angled triangle.

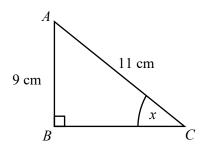
Calculate the length of *BC*.

Give your answer correct to 3 significant figures.

$$\cos(84) = \frac{x}{3.2}$$

$$x = \frac{3.2}{\cos(84)}$$

$$x = 30.61367115$$

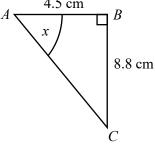

30.6

(Total for Question 6 is 2 marks)

7 *ABC* is a right-angled triangle.

Work out the size of the angle marked *x*. Give your answer correct to 1 decimal place.

$$Sin(x) = \frac{9}{11}$$


$$x = sin^{-1}(\frac{9}{11})$$

$$x = 54.90319877$$

54.9

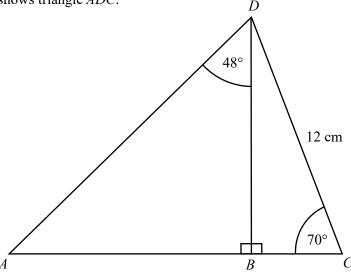
(Total for Question 7 is 2 marks)

8 *ABC* is a right-angled triangle.

Work out the size of the angle marked x. Give your answer correct to 1 decimal place.

$$\tan(x) = \frac{8.8}{4.5}$$

$$x = \tan^{-1}\left(\frac{8.8}{4.5}\right)$$


$$x = 62.91644914$$

62.9

(Total for Question 8 is 2 marks)

9 The diagram shows triangle *ADC*.

ABC is a straight line.

Work out the length of AC.

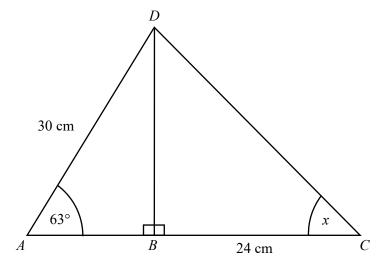
Give your answer correct to 3 significant figures.

$$\cos(70) = \frac{BC}{12}$$

$$Sin(70) = \frac{BD}{12}$$

$$tan(48) = AB_{11\cdot 27...}$$

$$AB = 11.27... \times tan(48)$$


16.6

.cm

(Total for Question 9 is 6 marks)

10 The diagram shows triangle ADC.

ABC is a straight line.

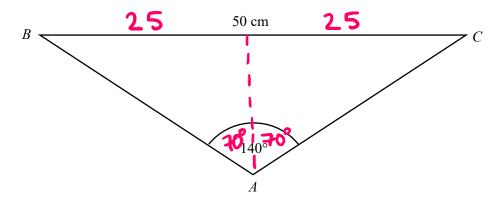
Work out the size of the angle marked x. Give your answer correct to 1 decimal place.

$$Sin(63) = BD$$

 30
 $BD = 30 \times Sin(63)$
 $BD = 26.73019573$

$$\tan(x) = \frac{26 \cdot 7...}{24}$$

$$x = \tan^{-1} \left(\frac{267...}{24}\right)$$


$$x = 48 \cdot 0805702$$

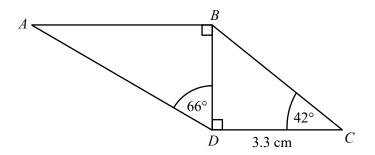
48.1

(Total for Question 10 is 4 marks)

11 The diagram shows triangle ABC.

$$AB = AC$$

Work out the perimeter of triangle *ABC*. Give your answer correct to 1 decimal place.


$$AB = 25$$

 $Sin(70)$
 $AB = 26.60444431$
 $AC = 26.60444431$

103.2

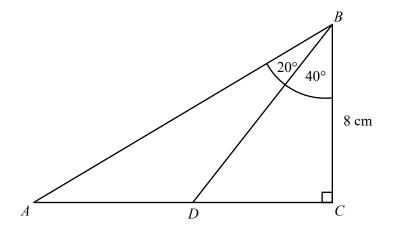
(Total for Question 11 is 4 marks)

12 The diagram shows trapezium ABCD.

Work out the length of *AD*. Give your answer correct to 3 significant figures.

$$\tan(42) = \frac{BD}{3.3}$$

$$Cos(66) = 2.97...$$
 AD
 $AD = 2.97...$
 $Cos(66)$
 $AD = 7.305300363$



7.31

..... 011

(Total for Question 12 is 4 marks)

13 The diagram shows triangle ABC.

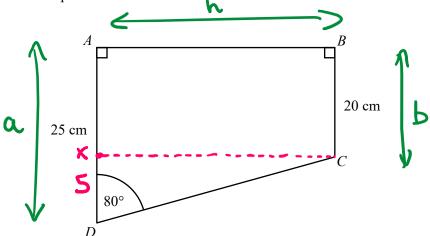
ADC is a straight line.

Work out the length of AD.

Give your answer correct to 3 significant figures.

$$tan(40) = \frac{DC}{8}$$

$$\tan(60) = \frac{AC}{8}$$


7.14

(Total for Question 13 is 4 marks)

14 The diagram shows trapezium *ABCD*.

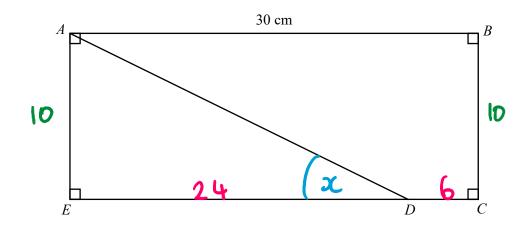
Work out the area of trapezium *ABCD*. Give your answer correct to 3 significant figures.

$$tan(80) = \frac{XC}{5}$$

 $XC = 5 \times tan(80)$
 $XC = 28.3564091$

Area =
$$\frac{1}{2}(a+b)h$$

= $\frac{1}{2}(25+20) \times 28.356...$
= 638.0192047



638

. cm² |

(Total for Question 14 is 4 marks)

15 The diagram shows rectangle *ABCE*.

The perimeter of rectangle ABCE is 80 cm

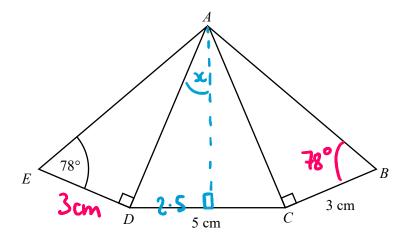
ED:DC=4:1

Work out the size of angle ADE.

Give your answer correct to 1 decimal place.

$$80 - 30 - 30 = 20$$

$$\tan(x) = \frac{10}{24}$$


$$x = \tan^{-1}\left(\frac{10}{24}\right)$$

$$x = 12.61986495$$

(Total for Question 15 is 4 marks)

16 ABCDE is a pentagon formed from three triangles.

Triangles ABC and ADE are congruent.

Work out the size of angle *DAC*. Give your answer correct to 1 decimal place.

$$tan(78) = AD$$

 $AD = 3 \times tan(78)$
= 14.11389033

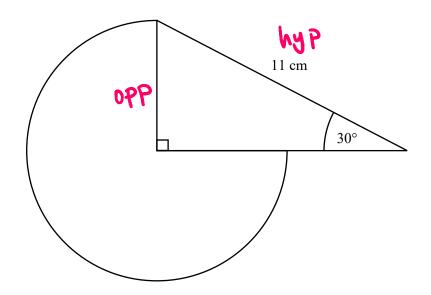
$$Sin(x) = \frac{2.5}{14.11...}$$

$$x = sin^{-1} \left(\frac{2.5}{14.11...}\right)$$

$$x = 10.20266209$$

Angle DAC =
$$2x$$

= $2 \times 10.20...$
= $20.4053...$



20.4

(Total for Question 16 is 4 marks)

17 A logo is made from a sector and a triangle.

Work out the area of the sector. Give your answer correct to 3 significant figures.

$$Sin(30) = \frac{Opp}{11}$$
 $Opp = 11 \times Sin(30)$
 $= 5.5$

Area =
$$\frac{3}{4} \times \pi \times 5.5^{2}$$

= 71.27 488 333

71.3

s)

(Total for Question 17 is 4 marks)