

Parallel Lines

REVISE THIS TOPIC

1 The equation of line L_1 is y = 3x + 4The equation of line $\mathbf{L_2}$ is 2y - 6x = 20

Show that these two lines are parallel.

[3 marks]

$$y = 3x + 4$$

gradient = 3

$$2y - 6x = 20$$

 $2y = 20 + 6x$

$$y = 10 + 3x$$

Both lines have same gradient so are parallel

2 The equation of line L_1 is y = 4x - 5The equation of line $\mathbf{L_2}$ is 3y - 12x - 6 = 0

Show that these two lines are parallel.

[3 marks]

$$y = 4x - 5$$
 $3y - 12x - 6 = 0$
 $y = 4x - 5$ $3y = 13$

$$y = 4x + 2$$

 $y = 4x + 2$
 $y = 4x + 2$

Both lines have same gradient so are parallel

The equation of line L_1 is y = 9 - 4xThe equation of line L_2 is 2y + 8x = 10

Show that these two lines are parallel.

[3 marks]

$$y = 9 - 4x$$

 $qradient = -4$

$$2y + 8x = 10$$

 $2y = 10 - 8x$

gradient = -4

Both lines have same gradient so are parallel

4 The equation of line L_1 is $y = \frac{1}{2}x + 1$

The equation of line $\mathbf{L_2}$ is 6y - 3x = 30

[3 marks]

Show that these two lines are parallel.

$$y = \frac{1}{2}x + 1$$

gradient = $\frac{1}{2}$

$$6y - 3x = 30$$

$$6y = 30 + 3x$$

 $y = 5 + 2x$

gradient = ½

Both lines have same gradient so are parallel

The equation of line L_1 is y = 4 - xThe equation of line L_2 is 5y - 5x - 50 = 0

Show that these two lines are **not** parallel.

[3 marks]

$$y = 4 - x$$

gradient = -1

$$5y - 5x - 50 = 0$$

 $5y = 5x + 50$

gradient = 1

gradients are not equal so lines not parallel

The equation of line L_1 is y = kx + 4The equation of line L_2 is 10y + 5x = 80

Lines $\mathbf{L_1}$ and $\mathbf{L_2}$ are parallel. Work out the value of k.

[3 marks]

$$10y + 5x = 80$$

 $10y = 80$

$$10y = 80 - 5x$$

 $y = 8 - 12x$

7 The equation of line L_1 is y = kx - 7The equation of line L_2 is 2y + 8x = 9

Lines L_1 and L_2 are parallel. Work out the value of k.

[3 marks]

$$2y + 8x = 9$$

$$2y = 9 - 8x$$

$$y = 2 - 4x$$

The equation of line L_1 is y = 8 - 6xThe equation of line L_2 is ky + 3x - 2 = 0

Lines L_1 and L_2 are parallel. Work out the value of k.

[3 marks]

$$ky + 3x - 2 = 0$$

 $ky = 2 - 3x$

Turn over ▶

9 Here are some equations of straight lines.

Match each equation on the left with one on the right so that the lines with those two equations are parallel.

One has been done for you.

[3 marks]

10

A = (3, 4)B = (5, 10)

C = (8, 10)

D = (5, 1)

Show that *AB* is parallel to *CD*. You **must** show your working.

[4 marks]

gradient of
$$AB = 10 - 4$$
 gradient of $CD = 1 - 10$

$$5 - 8$$

$$= \frac{6}{2} \qquad = \frac{-9}{-3}$$

- 3

Both lines have same gradient so are parallel

11 A = (1, -3)

B = (3, 5)

C = (-2, 5)

D = (8, k)

AB is parallel to CD

Work out the value of k.

[4 marks]

gradient of AB =
$$\frac{S--3}{3-1}$$
 gradient of CD = $\frac{k-5}{8--2}$

$$= k-3$$

10

11

Turn over ▶

The equation of line L_1 is y = 3x + 1

The equation of line $\mathbf{L_2}$ is y + kx = 20 where k is an integer.

The equation of line L_3 is 2y = 3x + c where c is an integer.

Tick the correct box for each statement below.

[3 marks]

	Must be true	Could be true	Cannot be true
Lines $\mathbf{L_1}$ and $\mathbf{L_2}$ are parallel		enk=-3	
Lines L ₂ and L ₃ are parallel			
Lines L_1 and L_3 are parallel			

