Parallel Lines

REVISE THIS TOPIC

1
The equation of line \mathbf{L}_{1} is $y=3 x+4$
The equation of line \mathbf{L}_{2} is $2 y-6 x=20$
Show that these two lines are parallel.
[3 marks]

$$
\begin{array}{rlr}
y=3 x+4 & 2 y-6 x & =20 \\
\text { gradient }=3 & 2 y & =20+6 x \\
& y & =10+3 x \\
& \text { gradient } & =3
\end{array}
$$

Both lines have same gradient so are parallel

2 The equation of line \mathbf{L}_{1} is $y=4 x-5$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $3 y-12 x-6=0$
Show that these two lines are parallel.
\qquad
Both lines have same gradient so are parallel

3 The equation of line \mathbf{L}_{1} is $y=9-4 x$
The equation of line \mathbf{L}_{2} is $2 y+8 x=10$
Show that these two lines are parallel.

$$
\begin{array}{rlrl}
\text { Show that these wo v lines are parallel. } \\
y=9-4 x & 2 y+8 x & =10 \\
\text { gradient }=-4 & & 2 y & =10-8 x \\
& y & =5-4 x \\
& & \text { gradient } & =-4
\end{array}
$$

Both lines have same gradient so are parallel
$4 \quad$ The equation of line \mathbf{L}_{1} is $y=\frac{1}{2} x+1$
The equation of line \mathbf{L}_{2} is $6 y-3 x=30$
Show that these two lines are parallel.

$$
\begin{array}{rr}
y=\frac{1}{2} x+1 & 6 y-3 x=30 \\
\text { gradient }=\frac{1}{2} & 6 y=30+3 x \\
y & =5+\frac{1}{2} x \\
& \text { gradient }=\frac{1}{2}
\end{array}
$$

Both lines have same gradient so are parallel
$5 \quad$ The equation of line L_{1} is $y=4-x$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $5 y-5 x-50=0$
Show that these two lines are not parallel.

$$
\begin{array}{rr}
y=4-x & 5 y-5 x-50 \\
\text { gradient }=-1 & 5 y \\
& \\
& \\
& =5 x+50 \\
& =x+10 \\
\text { gradient }=1
\end{array}
$$

gradients are not equal so lines not parallel
$6 \quad$ The equation of line \mathbf{L}_{1} is $y=k x+4$
The equation of line \mathbf{L}_{2} is $10 y+5 x=80$
Lines \mathbf{L}_{1} and $\mathbf{L}_{\mathbf{2}}$ are parallel. Work out the value of k.

$$
\begin{aligned}
10 y+5 x & =80 \\
10 y & =80-5 x \\
y & =8-\frac{1}{2} x
\end{aligned}
$$

$$
k=\quad-1 / 2
$$

$7 \quad$ The equation of line \mathbf{L}_{1} is $y=k x-7$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $2 y+8 x=9$
Lines \mathbf{L}_{1} and $\mathbf{L}_{\mathbf{2}}$ are parallel. Work out the value of k.

$$
\begin{aligned}
2 y+8 x & =9 \\
2 y & =9-8 x \\
y & =\frac{9}{2}-4 x
\end{aligned}
$$

$$
k=
$$

\qquad
8 The equation of line \mathbf{L}_{1} is $y=8-6 x$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $k y+3 x-2=0$
Lines \mathbf{L}_{1} and $\mathbf{L}_{\mathbf{2}}$ are parallel. Work out the value of k.
\qquad
$9 \quad$ Here are some equations of straight lines.
Match each equation on the left with one on the right so that the lines with those two equations are parallel.

One has been done for you.
[3 marks]

10

$$
\begin{aligned}
& A=(3,4) \\
& B=(5,10) \\
& C=(8,10) \\
& D=(5,1)
\end{aligned}
$$

Show that $A B$ is parallel to $C D$.
You must show your working.

$$
\begin{aligned}
& \text { gradient of } A B=\frac{10-4}{5-3} \text { gradient of } C D=\frac{1-10}{5-8} \\
& =\frac{6}{2}=\frac{-9}{-3} \\
& =3=3
\end{aligned}
$$

Both lines have same gradient so are parallel
11

$$
\begin{aligned}
& A=(1,-3) \\
& B=(3,5) \\
& C=(-2,5) \\
& D=(8, k)
\end{aligned}
$$

$A B$ is parallel to $C D$
Work out the value of k.

$$
\begin{array}{rlrl}
\text { gradient of } A B & =\frac{5--3}{3-1} & \text { gradient of } C D & =\frac{k-5}{8--2} \\
& =\frac{8}{2} & & =\frac{k-5}{10} \\
& =4 & \frac{k-5}{10}=4 \\
& k-5=40
\end{array}
$$

$$
k=\quad 45
$$

12 The equation of line $\mathbf{L}_{\mathbf{1}}$ is $y=3 x+1$
The equation of line \mathbf{L}_{2} is $y+k x=20 \quad$ where k is an integer.
The equation of line \mathbf{L}_{3} is $2 y=3 x+c \quad$ where c is an integer.
Tick the correct box for each statement below.
[3 marks]

	Must be true	Could be true	Cannot be true
Lines L_{1} and L_{2} are parallel			
Lines L_{2} and L_{3} are parallel			

