Transformations of Graphs

TOPIC

1
The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ are shown on the grids below.

1 (a) Draw the graph of $y=\mathrm{f}(x)+1$ onto the first grid.

1 (b) Draw the graph of $y=\mathrm{g}(x)-2$ onto the second grid.

2 The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ are shown on the grids below.

2 (a) Draw the graph of $y=\mathrm{f}(x+1)$ onto the first grid.
2 (b) Draw the graph of $y=\mathrm{g}(x-2)$ onto the second grid.

3 The graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ are shown on the grids below.

3 (a) Draw the graph of $y=-\mathrm{f}(x)$ onto the first grid.
3 (b) Draw the graph of $y=g(-x)$ onto the second grid.

4 The graph of $y=\mathrm{f}(x)$ is shown on the grid below.

4 (a) Draw the graph of $y=\mathrm{f}(x+1)+2$ onto the grid above.
[2 marks]

4 (b) Point $A(-2,2)$ is on the graph $y=\mathrm{f}(x)$
When the graph of $y=\mathrm{f}(x)$ is transformed to the graph with equation $y=\mathrm{f}(-x)$ the point A is mapped to point B.

Write down the coordinates of point B.

5 The graph of $y=\mathrm{f}(x)$ is shown on the grid below.

5 (a) Draw the graph of $y=\mathrm{f}(-x)-2$ onto the grid above.

5 (b) Point $A(4,2)$ is on the graph $y=\mathrm{f}(x)$
When the graph of $y=\mathrm{f}(x)$ is transformed to the graph with equation $y=-\mathrm{f}(x+7)$ the point A is mapped to point B.

Write down the coordinates of point B.

Anserer $(-3,-2$

6 The graph of $y=\mathrm{f}(x)$ is shown on the grid below.

6 (a) Draw the graph of $y=\mathrm{f}(x-1)+3$ onto the grid above.

6 (b) Point $A(3,-1)$ is on the graph $y=\mathrm{f}(x)$
When the graph of $y=\mathrm{f}(x)$ is transformed to the graph with equation $y=-\mathrm{f}(-x)$ the point A is mapped to point B.

Write down the coordinates of point B.
$7 \quad$ The grid below shows the graphs A, B and C.

On the grid above
graph A has been reflected to give graph B. graph A has been translated to give graph C.

The equation of graph A is $y=\mathrm{f}(x)$
7 (a) Write down an equation of graph B.

$$
\text { Answer } f(-\varkappa)
$$

7 (b) Write down an equation of graph C.

$8 \quad$ Here is the graph of $y=\sin x \quad$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

In parts (a), (b) and (c) the graph of $y=\sin x$ is shown as a dashed line.

8 (a) On the grid below sketch the graph of $y=\sin x-2$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
[1 mark]

8 (b) On the grid below sketch the graph of $y=\sin \left(x+90^{\circ}\right)$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

8 (c) On the grid below sketch the graph of $y=-\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
[1 mark]

The graph of $y=3 x^{2}+2 x-5$ is reflected in the x-axis.
The reflected graph has equation $y=\mathrm{f}(x)$
Work out $\mathrm{f}(x)$.

$$
\uparrow f(x)
$$

Give your answer in the form $a x^{2}+b x+c$ where a, b and c are integers. [2 marks]

$$
\begin{array}{r}
-\left(3 x^{2}+2 x-5\right) \\
=-3 x^{2}-2 x+5
\end{array}
$$

\qquad
\qquad

$$
\text { Answer }-3 x^{2}-2 x+5
$$

10 The graph of $y=x^{2}+5$ is translated 3 units to the left.
The translated graph has equation $y=f(x)$
Work out $\mathrm{f}(x)$.

$$
f(x+3)
$$

Give your answer in the form $x^{2}+a x+b$ where a and b are integers. [3 marks]

$$
\begin{aligned}
& (x+3)^{2}+5 \\
= & x^{2}+6 x+9+5 \\
= & x^{2}+6 x+14
\end{aligned}
$$

\qquad
\qquad

Answer \qquad $x^{2}+6 x+14$

11 The graph of $y=2 x^{2}-5 x+3$ is reflected in the y-axis.
The reflected graph has equation $y=\mathrm{f}(x)$
Work out $\mathrm{f}(x)$.

$$
f(-x)
$$

Give your answer in the form $a x^{2}+b x+c$ where a, b and c are integers.

$$
\begin{aligned}
& 2(-x)^{2}-5(-x)+3 \\
= & 2 x^{2}+5 x+3
\end{aligned}
$$

\qquad
\qquad

$$
\text { Answer } \quad 2 x^{2}+5 x+3
$$

12 The graph of $y=x^{3}-5$ is translated 2 units to the right.
The translated graph has equation $y=\mathrm{f}(x)$
Work out $\mathrm{f}(x)$.

$$
f(x-2)
$$

Give your answer in the form $x^{3}+a x^{2}+b x+c$ where a, b and c are integers.

$$
\begin{aligned}
& (x-2)^{3}-5 \\
= & \left(x^{2}-4 x+4\right)(x-2)-5 \\
= & x^{3}-4 x^{2}+4 x-2 x^{2}+8 x-8-5 \\
= & x^{3}-6 x^{2}+12 x-13
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
Answer $x^{3}-6 x^{2}+12 x-13$

13 Here are sketches of two graphs.

Graph A has equation $y=x^{2}+4 x$ $f(x-7)+3$

Graph A is translated to give graph B so that the turning point $(-2,-4)$ on graph A is mapped to the point $(5,-1)$ on graph B.

Work out an equation for graph B.
Give your answer in the form $x^{2}+a x+b \quad$ where a and b are integers. [4 marks]

$$
\begin{aligned}
& (x-7)^{2}+4(x-7)+3 \\
= & x^{2}-14 x+49+4 x-28+3 \\
= & x^{2}-10 x+24
\end{aligned}
$$

$$
\text { Answer } \quad x^{2}-10 x+24
$$

14 The graph of $y=10-2 x^{2}$ is translated 3 units to the right and 1 unit up. The translated graph has equation $y=\mathrm{f}(x)$

Work out $\mathrm{f}(x)$.

$$
f(x-3)+1
$$

Give your answer in the form $x^{2}+a x+b$ where a and b are integers. [4 marks]

$$
10-2(x-3)^{2}+1
$$

\qquad

$$
=10-2\left(x^{2}-6 x+9\right)+1
$$

$$
=10-2 x^{2}+12 x-18+1
$$

$$
=-2 x^{2}+12 x-7
$$

\qquad
\qquad
\qquad
\qquad

$$
\text { Answer }-2 x^{2}+12 x-7
$$

