

Velocity-Time Graphs

SCAN ME

REVISE THIS
TOPIC

CHECK YOUR
ANSWERS

1 A cyclist travels along a straight horizontal path between points *A* and *B*.

In a model of the motion of the cyclist, at time $t = 0$ the cyclist starts from rest at point *A* and accelerates uniformly for 5 seconds until they reach a speed of 10 ms^{-1}

For the next 30 seconds the cyclist travels at a constant speed of 10 ms^{-1} before decelerating uniformly for 2.5 seconds, coming to rest at point *B*.

Using the model

- (a) Sketch a speed-time graph for the motion of the cyclist between points *A* and *B*. (1)
- (b) Find the acceleration of the cyclist during the first 5 seconds. (1)
- (c) Find the deceleration of the cyclist during the final 2.5 seconds. (1)
- (d) Find the total distance travelled by the cyclist. (2)

(Total for Question 1 is 5 marks)

2

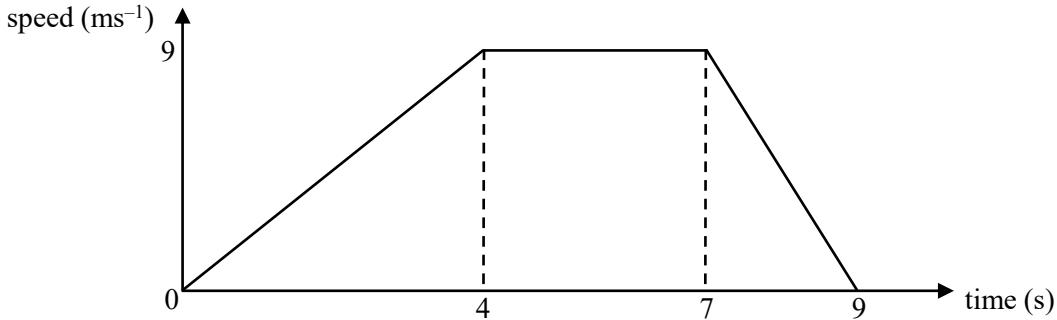


Figure 1

Figure 1 shows the speed-time graph for the journey of a dog chasing after a ball in straight line on horizontal ground.

At time $t = 0$, the dog is at rest at point *P*.

The dog then accelerates uniformly for 4 seconds until it reaches a speed of 9 ms^{-1}

For the next 3 seconds the dog travels at a constant speed of 9 ms^{-1}

The dog then decelerates uniformly until it comes to rest at point *Q* at time $t = 9$

- (a) Find the acceleration of the dog during the first 4 seconds. (1)
- (b) Find the deceleration of the dog during the final 2 seconds. (1)
- (c) Find the distance *PQ*. (2)
- (d) Find the average speed of the dog for the entire journey. (1)
- (e) Suggest one limitation of the model which could affect your answers to parts (a) to (d) (1)

1st

1

(Total for Question 2 is 6 marks)

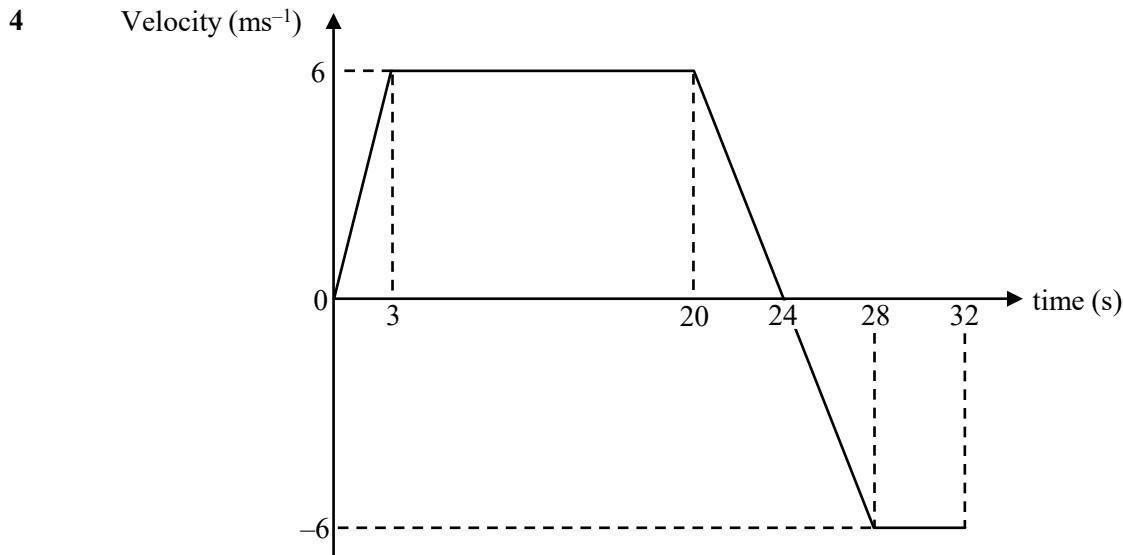
3 A car travels along a straight horizontal road between points C and D .

In a model of the motion of the car, at time $t = 0$ the car starts from rest at point C and moves with constant acceleration 2.5 ms^{-2} until it reaches a speed of 18 ms^{-1}

The car then moves at a constant speed of 18 ms^{-1} before it moves with a constant deceleration for 4 seconds as it comes to rest at point D .

The total time for the journey between C and D is 40 seconds.

(a) For this model of the motion of the car between C and D ,


(i) state the time for which the car is accelerating (1)

(ii) state the value of the constant deceleration (1)

(iii) sketch a speed-time graph (1)

(b) Find the distance between points C and D .

(Total for Question 3 is 5 marks)

Figure 1

Figure 1 shows the velocity time graph for a model of the motion of a person riding an electric scooter along a straight horizontal road.

(a) Find the acceleration during the first 3 seconds (1)

(b) Find the acceleration between 20 and 28 seconds. (1)

(c) Find the total distance travelled during the 32 second journey. (3)

(d) Find the displacement of the person, from their starting point, at time $t = 30$ (2)

(Total for Question 4 is 7 marks)

1st

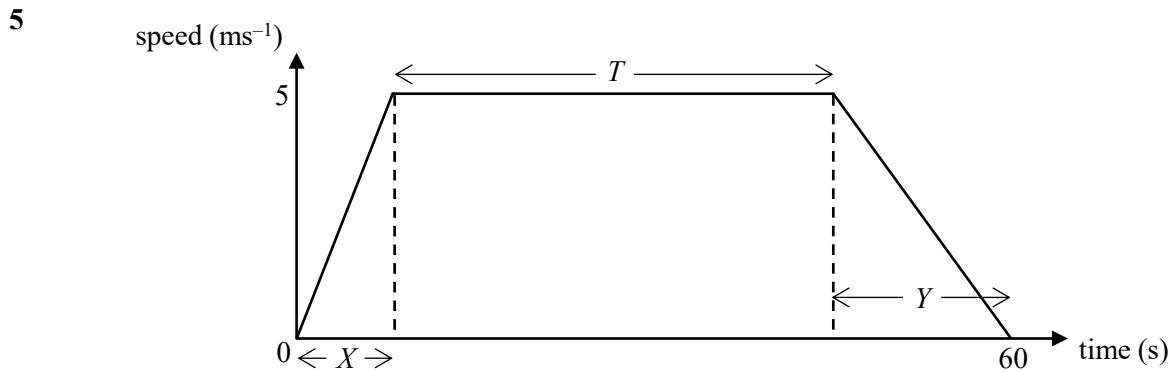


Figure 1

Figure 1 shows a sketch of the speed-time graph for a model of the motion of a runner travelling along a straight horizontal road from point A to point B in a time of 60 seconds.

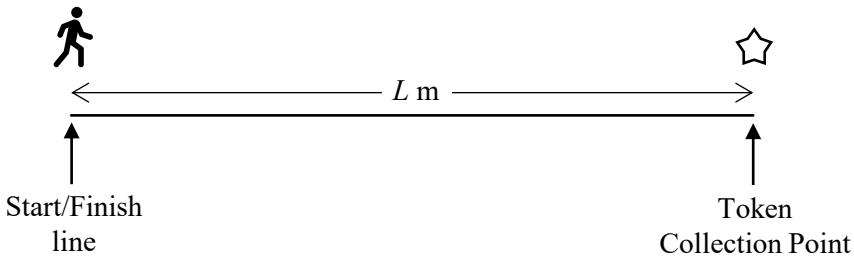
The distance from point A to point B is 267 metres.

In the model of the motion, the runner

- starts from rest at A at time $t = 0$
- then moves with constant acceleration for X seconds until they reach a speed of 5 ms^{-1}
- then travels at a constant speed of 5 ms^{-1} for T seconds.
- then moves with constant deceleration for Y seconds, until coming to rest at B .

(a) Find the value of T (3)

(b) Given that $Y = 2X$, find


(i) the value of X (2)

(ii) the acceleration during the first X seconds. (1)

(Total for Question 5 is 6 marks)

6 In a gameshow a contestant must run across a straight horizontal bridge of length L metres. Once they reach the other side, they must collect a token, then run back to the start/finish line.

In the model of the motion, the contestant starts from rest at the start/finish line at time $t = 0$ then accelerates at a constant rate for 3 seconds, until they reach a velocity of 6 ms^{-1}

They then maintain a constant velocity of 6 ms^{-1} for 12 seconds before decelerating at a constant rate for 3 seconds until they come to rest at the token collection point.

It takes them 5 seconds to find the token, and then they accelerate back towards the start/finish line at a constant rate for 4 seconds until they reach a velocity of -6 ms^{-1}

They then maintain at a constant velocity of -6 ms^{-1} until they cross the start/finish line at time T seconds.

Figure 1 shows the velocity time graph for a model of the motion of a contestant on a gameshow.

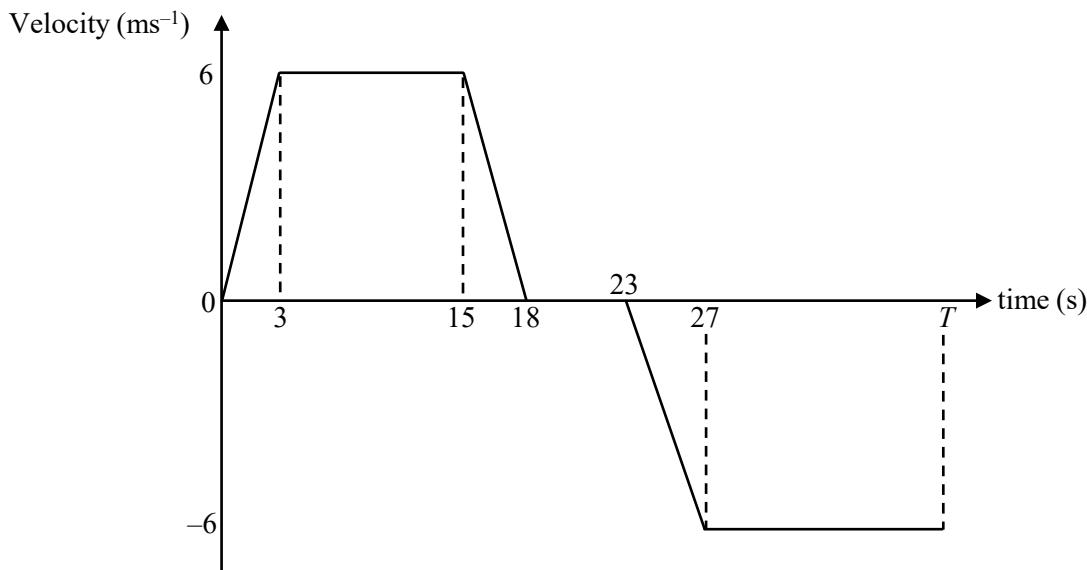


Figure 1

- Find the acceleration of the contestant during the first 3 seconds. Give the units of your answer. (1)
- Find the value of L (2)
- Find the value of T (3)

At time $t = P$ the displacement of the contestant from the start finish line is 60 m

- Find two possible values for P (4)

7

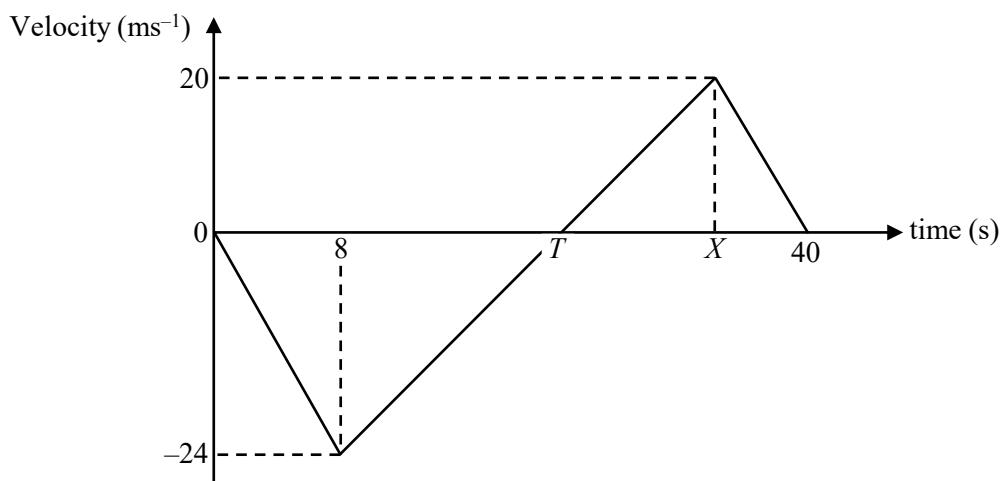


Figure 1

Figure 1 shows a sketch of the velocity-time graph for a model of the motion of a particle travelling in a straight line for 40 seconds.

In a model of the motion, the particle

- moves with uniform acceleration $A \text{ ms}^{-2}$ between $t = 0$ and $t = 8$
- moves with uniform acceleration $B \text{ ms}^{-2}$ between $t = 8$ and $t = X$
- moves with uniform acceleration $C \text{ ms}^{-2}$ between $t = X$ and $t = 40$

(a) Find the value of A (1)

(b) State the maximum **speed** of the particle during the 40 second journey. (1)

The velocity of the particle is 0 ms^{-1} when $t = 0$, $t = T$ and $t = 40$.

The total distance travelled by the particle during the 40 second journey is 446 metres.

(c) Find the value of T (3)

(d) Find the average velocity for the 40 second journey. (3)

(e) Find the value of B (1)

(f) Find the value of X (2)

(g) Find the value of C (1)

(Total for Question 7 is 12 marks)

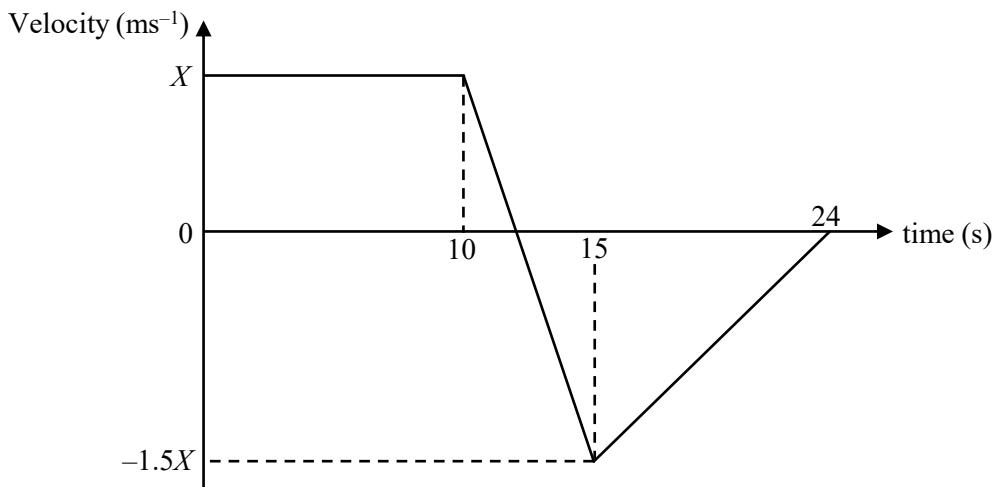
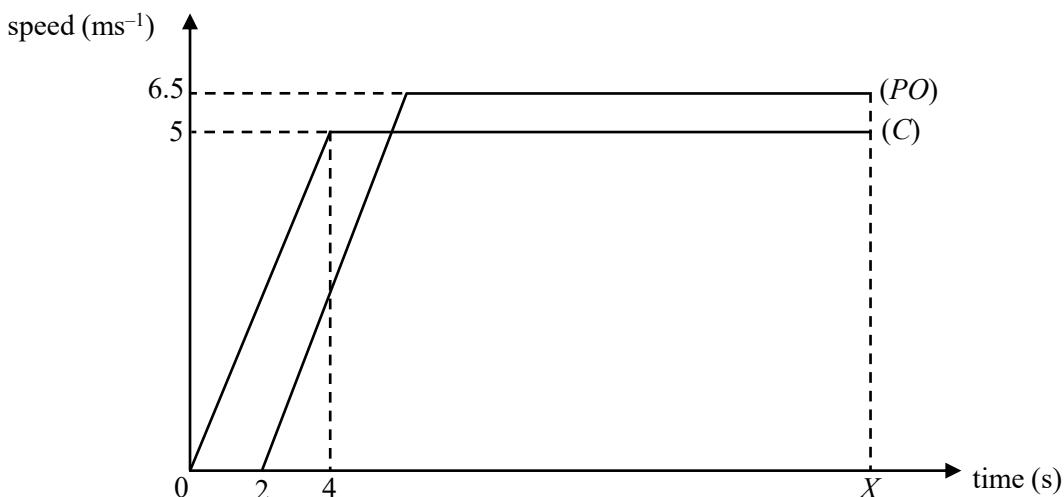

8

Figure 1

Figure 1 shows a sketch of the velocity-time graph for a model of the motion of a particle travelling in a straight line.

In the model of the motion, the particle


- starts travelling with constant velocity of $X \text{ ms}^{-1}$ at time $t = 0$ until time $t = 10$
- then moves with uniform acceleration $a \text{ ms}^{-2}$, for 5 seconds until it reaches a velocity of $-1.5X \text{ ms}^{-1}$
- then moves with uniform acceleration $b \text{ ms}^{-2}$, for 9 seconds, until coming to rest at time $t = 24$

At time $t = 24$, the displacement of the particle from its starting position is 7.2 metres.

Find the values of X , a and b .

(Total for Question 8 is 6 marks) (6)

1st
6

9

Figure 1

A police officer (*PO*) catches a criminal (*C*). The criminal manages to break free and runs away from the police officer in a straight line along a horizontal road. The police officer chases and eventually catches the criminal.

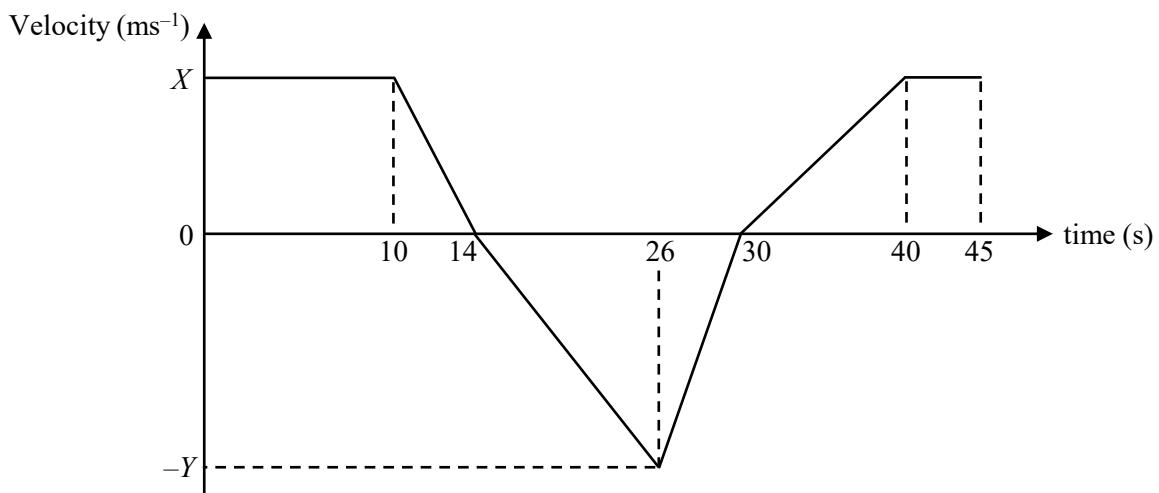
In a model of their motion, the criminal starts from rest at time $t = 0$ before travelling with constant acceleration for 4 seconds until they reach a speed of 5 ms^{-1} . The criminal maintains a constant speed of 5 ms^{-1} until they are caught by the police officer at time X seconds.

The police officer starts at rest at time $t = 0$ but remains at rest until time $t = 2$ when they accelerate with the same acceleration as the criminal until they reach a speed of 6.5 ms^{-1} . The police officer maintains a constant speed of 6.5 ms^{-1} until they catch the criminal at time X seconds.

The speed-time graphs shown in Figure 1 describe the model of the motion for the police officer and the criminal.

- (a) Find the value of X . (5)
- (b) Find the distance travelled by the criminal before they are caught. (2)
- (c) Describe one limitation of the model that could affect your answers to parts (a) and (b) (1)

(Total for Question 9 is 8 marks)



10

Figure 1

Figure 1 shows a sketch of the velocity-time graph for a model of the motion of a particle travelling in a straight line for 45 seconds.

In a model of the motion, the particle

- moves with constant velocity $X \text{ ms}^{-1}$, between the following time intervals.

$$t = 0 \text{ and } t = 10$$

$$t = 40 \text{ and } t = 45$$

- moves with uniform acceleration between the following time intervals

$$t = 10 \text{ and } t = 14$$

$$t = 14 \text{ and } t = 26$$

$$t = 26 \text{ and } t = 30$$

$$t = 30 \text{ and } t = 45$$

The total displacement of the particle when $t = 30$ is 0 m

The total distance travelled by the particle for the 45 second journey is 289 m

Work out the average velocity for the 45 second journey.

(6)
1st
(Total for Question 10 is 6 marks)
