Circle Theorems

SCAN ME

REVISE THIS TOPIC

$1 \quad A, B, C$ and D are points on a circle, centre O.

1 (a) Write down the size of angle $C A B$.

1 (b) Write down the size of angle $A C D$.

1 (c) Write down the size of angle $A E B$.

1 (d) Write down the size of angle BEC.
$2 A, B$, and C are points on a circle, centre O.

Work out the size of angle $C A B$.
Give a reason for your answer.

Answer \qquad degrees reason The angle in a semicircle is 90°
Angles in a triangle add to 180°
$3 \quad A, B$, and C are points on a circle, centre O.

Work out the size of angle $C O B$.
Give a reason for your answer.

Answer \qquad degrees
Reason The angle at the centre is twice the angle at the circumference.
A, B, C and D are points on a circle, centre O.

Work out the size of angle $A B C$.
Give a reason for your answer.

Answer \qquad 94 degrees

$5 \quad A, B$, and C are points on a circle, centre O. $A B$ is a tangent.

\square

Work out the size of angle $O C B$.
Give a reason for your answer.

Answer \qquad 90 quadrilateral add to 180°
 tangent meets a radius at 90°
$6 \quad A, B, C$ and D are points on a circle, centre O.

Work out the size of angle $A B C$.
Give reasons for your answer.
Angle $D O C=136^{\circ}$
The angle at the centre is twice the angle at the circumference.
Angle $O D C=$ Angle $O C D=22^{\circ}$
Base angles in an isosceles triangle are equal

$$
\text { Angle } \begin{aligned}
& A D C=22+45 \\
&=67 \\
& \text { Angle } \quad \begin{aligned}
A B C & =180-67 \\
& =113
\end{aligned}
\end{aligned}
$$

Opposite angles in a cyclic quadrilateral add to 180°

Answer \qquad 113 degrees
$7 \quad A, B, C$ and D are points on a circle, centre O. $E F$ is a tangent.

Work out the size of angle $A B C$.
Give reasons for your answer.
Angle $D A C=53^{\circ}$
Alternate segment theorem
Angle $A D=43^{\circ}$
Angles in a triangle add to 180° Angle $A B C=180-43$

$$
=137^{\circ}
$$

Opposite angles in a cyclic quadrilateral
add to 180°
\qquad
\qquad

Answer \qquad 137 degrees

8
A, B, and C are points on a circle, centre O.

Work out the size of angle $A C B$.
Give reasons for your answer.
Angle $A P B=65^{\circ}$
The angle at the centre is twice the an le at the circumference.
Angle $A B C=180-65$

$$
=115
$$

Opposite angles in a cyclic quadrilateral.
add to 180°
\qquad Answer_ $1 \mid 5$ degrees
$9 \quad A, B, C$ and D are points on a circle, centre O. $B A=B D$
$A B$ and $D C$ are parallel.

Work out the size of angle DBC.
Give reasons for your answer.
Angle $B A D=$ Angle $B D A=79^{\circ}$
Base angles in an isosceles triangle are equal
Angle $A B D=22^{\circ}$
Angles in a triangle add to 180°
Angle $B D C=$ Angle $A B D$
Alternate angles are equal
Angle $A B C=180-43$

$$
=137^{\circ}
$$

Opposite angles in a cyclic quadrilateral add to 180°
Angle $D B C=57^{\circ}$
Angles in a triangle add to 180°
Answer 57
$10 \quad A, B$, and C are points on a circle, centre O.

Work out the size of angle BAC.
Give reasons for your answer.
Angle $C B E=90-27$

$$
=63^{\circ}
$$

A tangent meets a radius at 90°
Angle $B A C=63^{\circ}$
Alternate segment theorem
\qquad
\qquad
\qquad
\qquad

Answer
$11 \quad C$ and E are points on a circle, centre O. $A B$ and $A D$ are tangents.

11 (a) Work out the size of angle COE. Angle $A E O=$ Angle $A C O=90^{\circ}$
A tangent meets a radius at 90°
Angle $C O E=110^{\circ}$ Angles in a quodir lateral add to

11 (b) $O C=5 \mathrm{~cm}$
Work out the length of $C A$ to 1 decimal place.
[2 marks]
Angle $C A O=35^{\circ} \quad \tan (35)=\frac{5}{C A}$

Answer \qquad cm
$12 \quad A$ and B are points on a circle, centre O. $D C$ and $E C$ are tangents.

[Reasons not required in this Q]
Work out the size of angle FBC.
Angle $A O B=136^{\circ}$ A tangent meets a radius at 90° and angles in a quadrilateral add to 360°
Angle $A B O=$ Angle $B A O=22^{\circ}$
Base angles in an isosceles triangle are equal
Angle $A P B=68^{\circ}$
The angle at the centre is twice the angle at the circumference.
Angle $A F B=112^{\circ}$ Opposite angles in a cyclic quadrilateral add to 180°

Angle $A B F=43^{\circ}$ Angles in a triangle add to 180°
Angle $F B C=25^{\circ}$ A tangent meets a radius at 90°
$13 \quad A, B$, and C are points on a circle, centre O. $E F$ is a tangent. Angle $F A B=5 \times$ Angle $C A F$.

Work out the size of angle AFC.
[Reasons not required in this Q]
Angle
$A C B=90^{\circ}$ The angle in a semicircle is 90°

$$
90 \div 6=15
$$

$$
\text { Angle } C A F=15^{\circ}
$$

Angle $E C B=90^{\circ} \quad$ Angle $A C B=17^{\circ}$
A tangent meets a radius at 90°
Angle $A P C=148^{\circ}$ Angles in a brangle add to 180°
Angle $C P F=32^{\circ}$ Angles on a straight line add to 180°
Angle AFC $=58^{\circ}$ Angles in a triangle add to 180°
\qquad degrees
$14 \quad A, B$, and C are points on a circle, centre O. $D E$ and $F G$ are tangents.

[Reasons not required in this Q]
14 (a) Work out the size of angle $A C B$.
Angle $A O B=102^{\circ}$ A tangent meets a radius at 90° and angles in a quadrilateral add to 360°
Angle $A C B=51^{\circ}$ Angle at the circumference is half the angle at the centre

> Answer 51 degrees

14 (b) Work out the size of angle $A B P$.
Angle $A B O=$ Angle $B A O=39^{\circ}$
Base angles in an isosceles triangle we equal
Angle $A B P=90-39 \quad A$ tangent meets

$$
=51
$$

a radius at 90°
$15 \quad A, B, C$ and D are points on a circle, centre O. $A B C D$ is a trapezium with $A B$ parallel to $D C$. $A B=A C$

Work out the size of angle DAC.

[5 marks]
[Reasons not required in this Q]

$$
3 x+2+3 x-8=180^{\circ}
$$

Opposite angles in a cyclic quadrilateral add to 180°

$$
\begin{array}{rlrl}
6 x-6 & =180 & 3(31)+2=95 \\
6 x & =186 & 3(31)-8=85 \\
x & =31^{\circ} &
\end{array}
$$

Angle $A C B=$ Angle $A B C=85$
Angle $C A B=10^{\circ}$ Angles in a triangle add to 180°
Angle $D C A=$ Angle $C A B$ alternate angles are equal
Angle $D A C=75^{\circ}$ Angles in a triangle add to 180° $A E$ and $A C$ are tangents.

16(a) Workouthe value oft [Reasons not required in this Q $]_{13 \text { marks }}$
\qquad Angle $B O D=2(5 x-7)$

$$
10 x-14=180-x-7
$$

(twice angle at circumference) $\quad 10 x-14=173-x$
Angle $B O D=180-(x+7) \quad 11 x=187$
(angles in quadrilateral add to 360°)

$$
x=17
$$

Answer \qquad degrees

16 (b) $A D=30 \mathrm{~cm}$
Work out the length of $O D$ to 3 significant figures.
[3 marks]

Answer
$3 \cdot 38$
cm

