Composite Functions TOPIC

1

$$
f(x)=3 x+4
$$

$$
\mathrm{g}(x)=x+10
$$

$$
\mathrm{h}(x)=x^{2}
$$

1 (a) Work out $\mathrm{fg}(x)$.
Give your answer in the form $a x+b$ where a and b are integers

$$
\begin{aligned}
f_{g}(x) & =3(x+10)+4 \\
& =3 x+30+4 \\
& =3 x+34
\end{aligned}
$$

$$
\operatorname{fg}(x)=\quad 3 x+34
$$

1 (b) Work out of $\operatorname{gf}(x)$
Give your answer in the form $a x+b$ where a and b are integers
\qquad
\qquad

$$
g^{\prime(x)}=\quad 3 x+14
$$

1 (c) Work out gh(x)

$$
g h(x)=x^{2}+10
$$

\qquad
\qquad
\qquad
$\operatorname{gh}(x)=$ \qquad
$2 \mathrm{f}(x)=x-3$

$$
g(x)=x^{2}+1
$$

$$
h(x)=10 x
$$

2 (a) Work out $\mathrm{fg}(x)$
Fully simplify your answer.
\qquad
\qquad
\qquad

$$
f(x)=x^{2}-2
$$

2 (b) Work out $\mathrm{hg}(x)$
Fully simplify your answer.

$$
\begin{aligned}
h g(x) & =10\left(x^{2}+1\right) \\
& =10 x^{2}+10
\end{aligned}
$$

\qquad
\qquad

$$
\text { max y }=\quad 10 x^{2}+10
$$

\qquad
2 (c) Work out gh(x)
Fully simplify your answer.

$$
\begin{aligned}
\text { ranger }(x) & =(10 x)^{2}+1 \\
& =100 x^{2}+1
\end{aligned}
$$

\qquad
\qquad

$$
\operatorname{gh}(x)=100 x^{2}+1
$$

3

$$
\mathrm{f}(x)=\frac{x}{4}
$$

$g(x)=4 x-8$
$h(x)=\sqrt{x}$

3 (a) Work out $\mathrm{fg}(x)$
Fully simplify your answer.

$$
\begin{aligned}
f g(x) & =\frac{4 x-8}{4} \\
& =x-2
\end{aligned}
$$

$$
f(x)=\quad x-2
$$

3 (b) Work out gif (x)
Fully simplify your answer.

$$
g f(x)=4\left(\frac{x}{4}\right)-8
$$

\qquad
\qquad

$$
g(x)=\quad x-8
$$

3 (c) Work out hf (x).
Fully simplify your answer.
\qquad

4

$$
f(x)=x-5
$$

$$
g(x)=x^{2}+30
$$

4 (a) Work out $\mathrm{fg}(x)$
Fully simplify your answer.

$$
\begin{aligned}
f g(x) & =x^{2}+30-5 \\
& =x^{2}+25
\end{aligned}
$$

$$
\operatorname{fg}(x)=\quad x^{2}+25
$$

\qquad
\qquad
\qquad

4 (b) Work out fg(3)

$$
\begin{aligned}
f g(x) & =x^{2}+25 \\
f(3) & =3^{2}+25 \\
& =9+25
\end{aligned}
$$

Answer

4 (c) Work out af (x)
Give your answer in the form $a x^{2}+b x+c$ where a, b and c are integers. [3 marks]

$$
\begin{aligned}
g f(x) & =(x-5)^{2}+30 \\
& =(x-5)(x-5)+30 \\
& =x^{2}-5 x-5 x+25+30 \\
& =x^{2}-10 x+55 \\
g(x)= & x^{2}-10 x+55
\end{aligned}
$$

5

$$
f(x)=2 x+1
$$

$$
g(x)=\sqrt{x+3}
$$

5 (a) Work out g(13)

$$
g(13)=\sqrt{13+3}
$$

$$
=\sqrt{16}
$$

Answer \qquad

5 (b) Work out $\mathrm{fg}(13)$

$$
f g(13)=f(4)
$$

$$
=2(4)+1
$$

Answer \qquad

5 (c) Work out gf(16)

$$
\begin{aligned}
g f(x) & =\sqrt{2 x+1+3} \\
& =\sqrt{2 x+4} \\
g f(16) & =\sqrt{2(16)+4} \\
& =\sqrt{36}
\end{aligned}
$$

Answer \qquad

$$
f(x)=x+2
$$

$$
\mathrm{g}(x)=x^{3}
$$

$$
\mathrm{h}(x)=\sqrt{x}
$$

6 (a) Work out gf(3)

$$
g f(x)=(x+2)^{3}
$$

\qquad

$$
\begin{aligned}
g f(3) & =(3+2)^{3} \\
& =3
\end{aligned}
$$

$$
=5^{3}
$$

Answer \qquad
6 (b) Work out $\operatorname{gh}(x)$
Give your answer in the form x^{k} where k is a fraction.

$$
g h(x)=(\sqrt{x})^{3}
$$

\qquad

$$
=\left(x^{1 / 2}\right)^{3}
$$

$$
=x^{3 / 2}
$$

$$
\operatorname{gh}(x)=\quad x^{3 / 2}
$$

6 (c) Work out if (x)
Give your answer in the form $a x^{3}+b x^{2}+c x+d$ where a, b, c and d are integers.

$$
\begin{aligned}
g f(x) & =(x+2)^{3} \\
& =(x+2)(x+2)(x+2)
\end{aligned}
$$

$$
=\left(x^{2}+2 x+2 x+4\right)(x+2)
$$

$$
=\left(x^{2}+4 x+4\right)(x+2)
$$

$$
=x^{3}+2 x^{2}+4 x^{2}+8 x+4 x+8
$$

\qquad

$$
g(x)=x^{3}+6 x^{2}+12 x+8
$$

$f(x)=2^{x}$
$g(x)=1-x$

$$
\mathrm{h}(x)=2+x
$$

(a) Work out gf(-3)

$$
\text { Answer } \frac{7}{8}
$$

7 (b) $\mathrm{hg}(x)-\mathrm{gh}(x)=k \quad$ where k is an integer. Find the value of k.

$$
\begin{array}{rlrl}
h g(x) & =2+(1-x) & g h(x) & =1-(2+x) \\
& =2+1-x & =1-2-x \\
& =3-x & =-1-x \\
h g(x) & -g h(x) & =(3-x)-(-1-x) \\
& =3-x+1+x
\end{array}
$$

$$
k=4
$$

7 (c) Show that $\frac{\mathrm{fh}(x)}{\mathrm{fg}(x)}=2^{a x+b}$ where a and b are integers.

$$
\begin{aligned}
f h(x)=2^{2+x} \quad \frac{f h(x)}{f g(x)} & =\frac{2^{2+x}}{2^{1-x}} \\
f g(x)=2^{1-x} & \\
& =2^{(2+x)-(1-x)} \\
& =2^{2+x-1+x} \\
& =2^{2 x+1}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
g f(x)=1-2^{x} & 2^{-3}=\frac{1}{2^{3}}
\end{array} \\
& g f(-3)=1-2^{-3}, 1-\frac{1}{8} L^{2}
\end{aligned}
$$

