Composite Functions
$1 \mathrm{f}(x)=3 x+4$
$\mathrm{g}(x)=x+10$
$h(x)=x^{2}$
(a) Work out $\mathrm{fg}(x)$

Give your answer in the form $a x+b$ where a and b are integers

$$
\begin{aligned}
f g(x) & =3(x+10)+4 \\
& =3 x+30+4 \\
& =3 x+34
\end{aligned}
$$

$$
f g(x)=3 x+34
$$

(b) Work out $\operatorname{gf}(x)$

Give your answer in the form $a x+b$ where a and b are integers

$$
\begin{aligned}
g f(x) & =3 x+4+10 \\
& =3 x+14
\end{aligned}
$$

(a) Work out $\operatorname{gh}(x)$

$$
g h(x)=x^{2}+10
$$

$$
g(x)=x^{2}+10
$$

$2 \mathrm{f}(x)=x-3$
$g(x)=x^{2}+1$
$h(x)=10 x$
(a) Work out $\mathrm{fg}(x)$

Fully simplify your answer.

$$
\begin{aligned}
f g(x) & =x^{2}+1-3 \\
& =x^{2}-2
\end{aligned}
$$

$$
\mathrm{fg}(x)=x^{2}-2
$$

(2)
(b) Work out $\operatorname{hg}(x)$

Fully simplify your answer.

$$
\begin{aligned}
h g(x) & =10\left(x^{2}+1\right) \\
& =10 x^{2}+10
\end{aligned}
$$

$$
\mathrm{hg}(x)=10 x^{2}+10
$$

(2)
(c) Work out $\operatorname{gh}(x)$

Fully simplify your answer.

$$
\begin{aligned}
g h(x) & =(10 x)^{2}+1 \\
& =100 x^{2}+1
\end{aligned}
$$

$$
g(x)=100 x^{2}+1
$$

(2)
$3 \mathrm{f}(x)=\frac{x}{4}$
$\mathrm{g}(x)=4 x-8$
$h(x)=\sqrt{x}$
(a) Work out $\mathrm{fg}(x)$

Fully simplify your answer.

$$
\begin{aligned}
f g(x) & =\frac{4 x-8}{4} \\
& =x-2
\end{aligned}
$$

$$
\operatorname{fg}(x)=\ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(b) Work out $\operatorname{gf}(x)$

Fully simplify your answer.

$$
\begin{aligned}
g f(x) & =4\left(\frac{x}{4}\right)-8 \\
& =x-8
\end{aligned}
$$

$$
\operatorname{gf}(x)=x-8
$$

(c) Work out $\operatorname{hf}(x)$

Fully simplify your answer.

$$
\begin{aligned}
h f(x) & =\sqrt{\frac{x}{4}} \\
& =\frac{\sqrt{x}}{\sqrt{4}}
\end{aligned}
$$

(2) (Total for Question 3 is 6 marks)
$4 \mathrm{f}(x)=x-5$

$$
\mathrm{g}(x)=x^{2}+30
$$

(a) Work out $\mathrm{fg}(x)$

Fully simplify your answer.

$$
\begin{aligned}
f g(x) & =x^{2}+30-5 \\
& =x^{2}+25
\end{aligned}
$$

$$
\mathrm{fg}(x)=x^{2}+25
$$

(2)
(b) Work out $\mathrm{fg}(3)$

$$
\begin{aligned}
f g(x) & =x^{2}+25 \\
f g(3) & =3^{2}+25 \\
& =9+25
\end{aligned}
$$

(c) Work out $\operatorname{gf}(x)$

Give your answer in the form $a x^{2}+b x+c$ where a, b and c are integers.

$$
\begin{aligned}
g f(x) & =(x-5)^{2}+30 \\
& =(x-5)(x-5)+30 \\
& =x^{2}-5 x-5 x+25+30 \\
& =x^{2}-10 x+55
\end{aligned}
$$

$$
g f(x)=x^{2}-10 x+55
$$

$5 \mathrm{f}(x)=2 x+1$

$$
\mathrm{g}(x)=\sqrt{x+3}
$$

(a) Work out g (13)

$$
\begin{aligned}
g(13) & =\sqrt{13+3} \\
& =\sqrt{16}
\end{aligned}
$$

\qquad
(b) Work out $\mathrm{fg}(13)$

$$
\begin{aligned}
f g(13) & =f(4) \\
& =2(4)+1
\end{aligned}
$$

\qquad
(c) Work out gf(16)

$$
\begin{aligned}
g f(x)=\sqrt{2 x+1+3} \quad g f(16) & =\sqrt{2(16)+4} \\
& =\sqrt{36}
\end{aligned}
$$

$$
=\sqrt{2 x+4}
$$

$6 \mathrm{f}(x)=x+2$
$\mathrm{g}(x)=x^{3}$
$\mathrm{h}(x)=\sqrt{x}$
(a) Work out gf(3)

$$
\begin{aligned}
g f(x) & =(x+2)^{3} \\
g f(3) & =(3+2)^{3} \\
& =5^{3}
\end{aligned}
$$

125
(2)
(b) Work out $\operatorname{gh}(x)$

Give your answer in the form x^{k} where k is a fraction.

$$
\begin{aligned}
\operatorname{gh}(x) & =(\sqrt{x})^{3} \\
& =\left(x^{1 / 2}\right)^{3} \\
& =x^{3 / 2}
\end{aligned}
$$

$$
\operatorname{gh}(x)=\quad x^{3 / 2}
$$

(2)
(c) Work out $\operatorname{gf}(x)$

Give your answer in the form $a x^{3}+b x^{2}+c x+d$ where a, b, c and d are integers.

$$
\begin{aligned}
g f(x) & =(x+2)^{3} \\
& =(x+2)(x+2)(x+2) \\
& =\left(x^{2}+2 x+2 x+4\right)(x+2) \\
& =\left(x^{2}+4 x+4\right)(x+2) \\
& =x^{3}+2 x^{2}+4 x^{2}+8 x+4 x+8
\end{aligned}
$$

$$
g f(x)=x^{3}+6 x^{2}+12 x+8
$$

$7 \mathrm{f}(x)=2^{x}$

$$
\mathrm{g}(x)=1-x
$$

$$
\mathrm{h}(x)=2+x
$$

(a) Work out gf(-3)

$$
\begin{aligned}
& g f(x)=1-2^{x} \\
& g f(-3)=1-2^{-3}
\end{aligned}
$$

$$
1-\frac{1}{8} 2^{-3}=\frac{1}{2^{3}}
$$

7
\qquad
(2)
$\operatorname{hg}(x)-\operatorname{gh}(x)=k \quad$ where k is an integer.

$$
=3-x
$$

$$
\begin{aligned}
g h(x) & =1-(2+x) \\
& =1-2-x \\
& =-1-x
\end{aligned}
$$

$$
h g(x)-g h(x)=(3-x)-(-1-x)
$$

$$
=3-x+1+x
$$

$$
k=
$$

\qquad
(c) Show that $\frac{\mathrm{fh}(x)}{\mathrm{fg}(x)}=2^{a x+b} \quad$ where a and b are integers.

$$
\begin{aligned}
& f h(x)=2^{2+x} \quad \frac{f h(x)}{f g(x)}=\frac{2^{2+x}}{2^{1-x}} \\
& \begin{aligned}
f g(x)=2^{1-x} & \\
& =2^{(2+x)-(1-x)} \\
& =2^{2+x-1+x} \\
& =2^{2 x+1}
\end{aligned}
\end{aligned}
$$

