

Transformations of Graphs

REVISE THIS TOPIC

1 The graphs of y = f(x) and y = g(x) are shown on the grids below.

1 (a) Draw the graph of y = f(x) + 1 onto the first grid.

[1 mark]

1 (b) Draw the graph of y = g(x) - 2 onto the second grid.

[1 mark]

2 The graphs of y = f(x) and y = g(x) are shown on the grids below.

2 (a) Draw the graph of y = f(x + 1) onto the first grid.

[1 mark]

2 (b) Draw the graph of y = g(x - 2) onto the second grid.

[1 mark]

3 The graphs of y = f(x) and y = g(x) are shown on the grids below.

3 (a) Draw the graph of y = -f(x) onto the first grid.

3 (b) Draw the graph of y = g(-x) onto the second grid.

[1 mark]

[1 mark]

4 The graph of y = f(x) is shown on the grid below.

4 (a) Draw the graph of y = f(x + 1) + 2 onto the grid above.

[2 marks]

4 (b) Point A(-2, 2) is on the graph y = f(x)

When the graph of y = f(x) is transformed to the graph with equation y = f(-x) the point A is mapped to point B.

Write down the coordinates of point ${\it B}$.

[1 mark]

5 The graph of y = f(x) is shown on the grid below.

5 (a) Draw the graph of y = f(-x) - 2 onto the grid above.

[2 marks]

5 (b) Point A(4, 2) is on the graph y = f(x)

When the graph of y = f(x) is transformed to the graph with equation y = -f(x + 7) the point A is mapped to point B.

Write down the coordinates of point ${\it B}$.

[2 marks]

Answer (-3, -2)

6 The graph of y = f(x) is shown on the grid below.

6 (a) Draw the graph of y = f(x - 1) + 3 onto the grid above.

[2 marks]

6 (b) Point A(3, -1) is on the graph y = f(x)

When the graph of y = f(x) is transformed to the graph with equation y = -f(-x) the point A is mapped to point B.

Write down the coordinates of point ${\it B}$.

[2 marks]

7 The grid below shows the graphs A, B and C.

On the grid above

graph A has been reflected to give graph B. graph A has been translated to give graph C.

The equation of graph A is y = f(x)

7 (a) Write down an equation of graph B.

[1 mark]

Answer
$$\int (-) c$$

7 (b) Write down an equation of graph *C*.

[2 marks]

8 Here is the graph of $y = \sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

In parts (a), (b) and (c) the graph of $y = \sin x$ is shown as a dashed line.

8 (a) On the grid below sketch the graph of $y = \sin x - 2$ for $0^{\circ} \le x \le 360^{\circ}$

[1 mark]

www.1stclassmaths.com

8 (b) On the grid below sketch the graph of $y = \sin(x + 90^\circ)$ for $0^\circ \le x \le 360^\circ$

[1 mark]

8 (c) On the grid below sketch the graph of $y = -\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

[1 mark]

9 The graph of $y = 3x^2 + 2x - 5$ is reflected in the *x*-axis.

The reflected graph has equation y = f(x)

Work out f(x).

Give your answer in the form $ax^2 + bx + c$ where a, b and c are integers.

[2 marks]

$$-(3x^{2}+2x-5)$$

$$=-3x^{2}-2x+5$$

$$-3x^2-2x+5$$

The graph of $y = x^2 + 5$ is translated 3 units to the left.

The translated graph has equation y = f(x)

f(x+3)

Work out f(x).

Give your answer in the form $x^2 + ax + b$ where a and b are integers. [3 marks]

$$(x+3)^{2}+5$$
= $x^{2}+6x+9+5$
= $x^{2}+6x+14$

Answer $x^2 + 6x + 14$

The graph of $y = 2x^2 - 5x + 3$ is reflected in the y-axis.

The reflected graph has equation y = f(x)

Work out f(x).

Give your answer in the form $ax^2 + bx + c$ where a, b and c are integers. [2 marks]

$$2(-x)^{2} - 5(-x) + 3$$

$$= 2x^{2} + 5x + 3$$

Answer
$$2x^2 + 5x + 3$$

The graph of $y = x^3 - 5$ is translated 2 units to the right.

The translated graph has equation y = f(x)

T

Work out f(x).

$$f(x-2)$$

Give your answer in the form $x^3 + ax^2 + bx + c$ where a, b and c are integers.

[4 marks]

$$(x-2)^3-5$$

$$=(x^2-4x+4)(x-2)-5$$

$$= x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 - 5$$

$$= x^3 - 6x^2 + 12x - 13$$

Answer $x^3 - 6x^2 + 12x - 13$

13 Here are sketches of two graphs.

Graph A has equation $y = x^2 + 4x$

Graph A is translated to give graph B so that the turning point (-2, -4) on graph A is mapped to the point (5, -1) on graph B.

Work out an equation for graph B.

Give your answer in the form $x^2 + ax + b$ where a and b are integers. [4 marks]

$$(x-7)^{2} + 4(x-7) + 3$$

$$= x^{2} - 10x + 24$$

 $x^2 - 10x + 24$ Answer

The graph of $y = 10 - 2x^2$ is translated 3 units to the right and 1 unit up. The translated graph has equation y = f(x)

Work out f(x).

Give your answer in the form $ax^2 + bx + c$ where a, b and c are integer [4 marks]

$$= 10 - 2(x-3)^{2} + 1$$

$$= 10 - 2(x^{2} - 6x + 9) + 1$$

$$= 10 - 2x^{2} + 12x - 18 + 1$$

$$= -2x^2 + 12x - 7$$

Answer $-2x^2+12x-7$

