Perpendicular Lines

REVISE THIS
TOPIC

1 \begin{tabular}{l}
The equation of line \mathbf{L}_{1} is $y=5 x+1$ \\
The equation of line \mathbf{L}_{2} is $5 y+x=20$ \\
Show that these two lines are perpendicular. \\

$y=5 x+1$	
gradient $=5$	$5 y+x=20$
$5 y$	$=20-x$
y	$=4-\frac{1}{5} x$

\\
gradient $=-\frac{1}{5}$
\end{tabular}

$5 x-\frac{1}{5}=-1$ therefore L_{1} and L_{2} are perpendicular

2 The equation of line \mathbf{L}_{1} is $y=8-3 x$
The equation of line \mathbf{L}_{2} is $9 y-3 x-6=0$
Show that these two lines are perpendicular.

$$
\begin{array}{rl}
y=8-3 x & 9 y-3 x
\end{array}=6
$$

$-3 \times \frac{1}{3}=-1$ therefore L_{1} and L_{2} are perpendicular

3 The equation of line \mathbf{L}_{1} is $2 y=x+10$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $4 y+8 x=16$
Show that these two lines are perpendicular.

$$
2 y=x+10
$$

$$
y=\frac{1}{2} x+5
$$

$$
\text { gradient }=\frac{1}{2}
$$

$$
\begin{aligned}
4 y+8 x & =16^{[3 \text { marks }]} \\
4 y & =16-8 x \\
y & =4-2 x
\end{aligned}
$$

gradient $=-2$
$1 / 2 x-2=-1$ therefore L_{1} and L_{2} are perpendicular
4 The equation of line \mathbf{L}_{1} is $y=\frac{3}{4} x+1$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $6 y+8 x=30$
Show that these two lines are perpendicular.

$$
\begin{aligned}
6 y+8 x & =30 \\
6 y & =30-8 x \\
y & =5-\frac{8}{6} x
\end{aligned}
$$

gradient $=-4 / 3$
$\frac{3}{4} x-\frac{4}{3}=-1$ therefore L_{1} and L_{2} are perpendicular
$5 \quad$ The equation of line \mathbf{L}_{1} is $2 y=3 x-6$
The equation of line L_{2} is $8 y-12 x-40=0$
Show that these two lines are not perpendicular.

$$
2 y=3 x-6
$$

$$
y=\frac{3}{2} x-3
$$

$$
\begin{aligned}
8 y-12 x & =40^{[3 \text { marks }]} \\
8 y & =40+12 x \\
y & =5+\frac{12}{8} x
\end{aligned}
$$

gradient $=3 / 2$
gradient $=\frac{3}{2}$
Both gradients are the same so L_{1} and L_{2} are parallel not perpendicular
$6 \quad$ The equation of line \mathbf{L}_{1} is $y=k x+4$
The equation of line \mathbf{L}_{2} is $2 y+4 x=10$
Lines \mathbf{L}_{1} and \mathbf{L}_{2} are perpendicular. Work out the value of k.
[3 marks]

$$
\begin{gathered}
y=k x+4 \quad 2 y+4 x=10 \\
\text { gradient }=k \quad 2 y=10-4 x-2 \times k=-1 \\
y=5-2 x \quad k=\frac{-1}{2} \\
\text { gradient }=-2 \\
\frac{1}{2}
\end{gathered}
$$

$7 \quad$ The equation of line \mathbf{L}_{1} is $2 y=k x-2$
The equation of line $\mathbf{L}_{\mathbf{2}}$ is $3 y+x=18$
Lines \mathbf{L}_{1} and \mathbf{L}_{2} are perpendicular. Work out the value of k.

$$
\begin{array}{ccc}
2 y=k x-2 & 3 y+x=18 & \frac{k}{2} x-\frac{1}{3}=-1 \\
y=\frac{k}{2} x-1 & 3 y=18-x & -\frac{k}{6}=-1 \\
\text { gradient }=\frac{k}{2} & y=18-\frac{1}{3} x & -k=-6 \\
& \text { gradient }=-\frac{1}{3} & k=6 \\
k= & 6 &
\end{array}
$$

$8 \quad$ The equation of line \mathbf{L}_{1} is $y=3-\frac{2}{5} x$
The equation of line \mathbf{L}_{2} is $k y-6 x-20=0$
Lines \mathbf{L}_{1} and \mathbf{L}_{2} are perpendicular. Work out the value of k.
[3 marks]
\qquad
$9 \quad$ Here are some equations of straight lines.
Match each equation on the left with one on the right so that the lines with those two equations are perpendicular.

One has been done for you.

The equation of line \mathbf{L}_{1} is $y=3 x+1$ Line L_{2} is
perpendicular to line $\mathbf{L}_{\mathbf{1}}$
and
passes through the point $(9,4)$
Work out an equation for line \mathbf{L}_{2}
gradient of $L_{2}=-\frac{1}{3}$

$$
\begin{aligned}
& y=-\frac{1}{3} x+c \\
& 4=-\frac{1}{3}(9)+c \\
& 4=-3+c \\
& c=7
\end{aligned}
$$

Answer
\mathbf{L}_{1} is $y=5-4 x$
11 The equation of line \mathbf{L}_{1} is $y=5-4 x$
Line L_{2} is
perpendicular to line $\mathbf{L}_{\mathbf{1}}$
and
passes through the point $(4,12)$
Work out an equation for line \mathbf{L}_{2}
gradient of $L_{1}=-4$
gradient of $L_{2}=\frac{1}{4}$

$$
12=\frac{1}{4}(4)+c
$$

$$
12=1+c
$$

$$
c=11
$$

12 The equation of line \mathbf{L}_{1} is $y=\frac{1}{2} x+3$
Line L_{2} is
perpendicular to line $\mathbf{L}_{\mathbf{1}}$
and
passes through the point $(-3,7)$
Work out an equation for line \mathbf{L}_{2}
gradient of $L_{1}=\frac{1}{2}$
gradient of $L_{2}=-2$

$$
\begin{aligned}
y & =-2 x+c \\
7 & =-2(-3)+c \\
7 & =6+c \\
c & =1
\end{aligned}
$$

Answer

$$
y=-2 x+1
$$

\qquad
13 The equation of line \mathbf{L}_{1} is $y=2-\frac{1}{6} x$ Line L_{2} is
perpendicular to line $\mathbf{L}_{\mathbf{1}}$
and
passes through the point $(2,7)$
Work out an equation for line \mathbf{L}_{2}
gradient of $L_{1}=-\frac{1}{6}$
gradient of $L_{2}=6$

$$
\begin{aligned}
& y=6 x+c \\
& 7=6(2)+c \\
& 7=12+c \\
& c=-5
\end{aligned}
$$

\qquad
$B=(1,9)$ $C=(15,2)$

Work out the equation of the line that is perpendicular to line $A B$ and passes through point C
\qquad
\qquad

Answer \qquad
15

$$
A=(0,6)
$$

$$
B=(3,8)
$$

$$
C=(6,6)
$$

Work out the equation of the line that is perpendicular to line $A B$
and
passes through point C
[4 marks]

$$
\begin{array}{rlrl}
\text { gradient of } A B= & \frac{8-6}{3-0} & \begin{aligned}
y & =-\frac{3}{2} x+c \\
& 6
\end{aligned}=-\frac{3}{2}(6)+c \\
& =\frac{2}{3} & & 6=-9+c \\
& & =15
\end{array}
$$

\qquad
\qquad

Answer

$$
y=-\frac{3}{2} x+15
$$

$16 \quad A=(5,-3) \quad B=(3,5) \quad C=(-5,2)$

Work out the equation of the line that is perpendicular to line $A B$ and

$$
\begin{array}{rlrl}
\text { passes through point } C & & \\
\text { gradient of } A B & =\frac{5-(-3)}{3-5} & & y
\end{array}=\frac{1}{4} x+C \text { ma }
$$

Work out the equation of the line that
is perpendicular to line $A B$
and
passes through point C

$$
\begin{array}{rlrl}
\text { gradient of } A B & =\frac{1-5}{6-(-4)} & y & =\frac{5}{2} x+c \\
& =\frac{-4}{10} & -9 & =\frac{5}{2}(-8)+c \\
& =-20+c \\
& =-\frac{2}{5} & & =11
\end{array}
$$

Answer

$$
y=\frac{5}{2} x+11
$$

18 The equation of line \mathbf{L}_{1} is $y=3-2 x$
Line L_{2} is
perpendicular to line $\mathbf{L}_{\mathbf{1}}$
and
passes through the point $(6,2)$

18 (a) Work out the coordinates of the point where line \mathbf{L}_{2} intersects the x-axis.
gradient of $L_{2}=\frac{1}{2} \quad$ At x-axis $y=0$

$$
\begin{array}{ll}
y=\frac{1}{2} x+c & y=\frac{1}{2} x-1 \\
2=\frac{1}{2}(6)+c & 0=\frac{1}{2} x-1 \\
2=3+c & \times 2\left(\begin{array}{l}
1 \\
\left.2=\frac{1}{2} x\right) \times 2 \\
c=-1
\end{array}\right. \\
z=x
\end{array}
$$

Answer (2, 0)

18 (b) Work out the coordinates of the point where line \mathbf{L}_{2} intersects the y-axis.
At y-axis $x=0$

$$
\begin{aligned}
& y=\frac{1}{2}(0)-1 \\
& y=-1
\end{aligned}
$$

\qquad
Answer ($0,-1$)

19 The equation of line \mathbf{L}_{1} is $y=2 x+2$ Line L_{2} is
perpendicular to line \mathbf{L}_{1}
and
passes through the point $(-8,11)$
Lines \mathbf{L}_{1} and $\mathbf{L}_{\mathbf{2}}$ intersect at the point P.
Line L_{1} intersects the x-axis at the point Q.
Line \mathbf{L}_{2} intersects the x-axis at the point R.
Work out the area of triangle $P Q R$.
gradient of $L_{1}=2$

$$
y=-\frac{1}{2} x+c
$$

$$
\begin{array}{r}
2 x+2=0 \\
2 x=-2 \\
x=-1 \\
Q=(-1,0) \\
-\frac{1}{2} x+7=0 \\
7=\frac{1}{2} x \\
x=14
\end{array}
$$

gradient of $L_{2}=-\frac{1}{2}$
$11=-\frac{1}{2}(-8)+c$

$$
11=4+c
$$

$$
c=7
$$

L_{2} is $y=-\frac{1}{2} x+7$
L_{1} and L_{2} intersect when

$$
\times 2\left(\begin{array}{c}
2 x+2=-\frac{1}{2} x+7 \\
4 x+4=-x+14 \\
5 x=10 \\
x=2 \quad P=(2,6) \\
y=2(2)+2 \\
y=6
\end{array}\right.
$$

