

Perpendicular Lines

REVISE THIS **TOPIC**

1 The equation of line L_1 is y = 5x + 1The equation of line $\mathbf{L_2}$ is 5y + x = 20

Show that these two lines are perpendicular.

[3 marks]

$$y = 5x + 1$$

gradient = 5

$$5y = 20 - x$$

gradient = - 5

2 The equation of line L_1 is y = 8 - 3xThe equation of line $\mathbf{L_2}$ is 9y - 3x - 6 = 0

Show that these two lines are perpendicular.

[3 marks]

$$y = 8 - 3x$$

gradient = -3

$$9y - 3x = 6$$

gradient = /2

3 The equation of line L_1 is 2y = x + 10The equation of line L_2 is 4y + 8x = 16

Show that these two lines are perpendicular.

[3 marks]

$$2y = x + 10$$

$$y = \frac{1}{2}x + 5$$

4y=16-8x y=4-2x

gradient = -2

4y+8x=16

1/2 x-2=-1 therefore L, and L2 are perpendicular

The equation of line L_1 is $y = \frac{3}{4}x + 1$

The equation of line L_2 is 6y + 8x = 30

[3 marks]

Show that these two lines are perpendicular.

$$y = \frac{3}{4} x + 1$$

64 + 8x = 30

6y = 30 - 8xy = 5 - 8ex

gradient = -4/3

34x-43=-1 therefore L, and L2 are perpendicular

5 The equation of line L_1 is 2y = 3x - 6The equation of line $\mathbf{L_2}$ is 8y - 12x - 40 = 0

Show that these two lines are **not** perpendicular.

[3 marks] 8y - 12x = 40

8y=40+12x

4=5+ 12x

gradient = 3/2

gradient = 3/2

Both gradients are the same so L and Lz

are parallel not perpendicular

The equation of line L_1 is y = kx + 4The equation of line L_2 is 2y + 4x = 10

Lines L_1 and L_2 are perpendicular. Work out the value of k.

[3 marks]

$$y = kx+4$$
 $2y + 4x = 10$
 $y = 4x + 4x = 10$
 $y = 4x + 4x = 10$
 $y = 5 - 2x + 2 = -1$
 $y = 5 - 2x + 2 = -1$
 $y = 5 - 2x + 2 = -1$

k = ______

7 The equation of line L_1 is 2y = kx - 2The equation of line L_2 is 3y + x = 18

Lines L_1 and L_2 are perpendicular. Work out the value of k.

[3 marks]

$$2y = kx - 2$$
 $3y + x = 18$ $2x - 3 = -1$
 $y = 2x - 1$ $3y = 18 - x$ $-12x - 12x -$

k = _____

The equation of line L_1 is $y = 3 - \frac{2}{5}x$

The equation of line $\mathbf{L_2}$ is ky - 6x - 20 = 0

Lines L_1 and L_2 are perpendicular. Work out the value of k. [3 marks]

$$y = 3 - \frac{2}{5}x$$
 $ky = 6x + 20$ $-\frac{2}{5}x\frac{6}{k} = -1$
gradient = $-\frac{2}{5}$ $y = \frac{6}{k}x + \frac{20}{k}$ $-\frac{12}{5k} = -1$
gradient = $\frac{6}{k}$ $\frac{12}{5k}$

-12=-5k

18

Turn over ▶

9 Here are some equations of straight lines.

Match each equation on the left with one on the right so that the lines with those two equations are perpendicular.

One has been done for you.

[3 marks]

The equation of line L_1 is y = 3x + 1Line L_2 is

perpendicular to line $\boldsymbol{L}_{\!1}$

and

passes through the point (9, 4)

Work out an equation for line $\boldsymbol{L_2}$

[3 marks]

$$y=-\frac{1}{3}x+c$$

Answer $y = -\frac{1}{3}x + 7$

The equation of line L_1 is y = 5 - 4xLine L_2 is

perpendicular to line L₁

and

passes through the point (4, 12)

Work out an equation for line L_2

[3 marks]

Answer $y = \frac{1}{4}x + 11$

9

Turn over ▶

The equation of line L_1 is $y = \frac{1}{2}x + 3$ 12 Line L₂ is

perpendicular to line L1

and

passes through the point (-3, 7)

Work out an equation for line L2

[3 marks]

gradient of
$$L_2 = -2$$

$$y = -2x + c$$

$$7 = -2(-3) + c$$

Answer y = -2x + 1

The equation of line \mathbf{L}_1 is $y = 2 - \frac{1}{6}x$ 13 Line L₂ is

perpendicular to line L1

and

passes through the point (2, 7)

Work out an equation for line L2

[3 marks]

$$y = 6x + c$$

 $7 = 6(2) + c$

$$c = -5$$

y = 6x - 5Answer

$$A = (2, 6)$$

$$B = (1, 9)$$

$$C = (15, 2)$$

Work out the equation of the line that

is perpendicular to line AB

and

passes through point C

[4 marks]

$$y = 3x + c$$

$$2 = 5 + 0$$

$$=-3$$

Answer

$$y = \frac{1}{3}x - 3$$

15

$$A = (0, 6)$$

$$B = (3, 8)$$

$$C = (6, 6)$$

Work out the equation of the line that

is perpendicular to line AB

and

passes through point C

[4 marks]

$$y = -\frac{1}{2}x + C$$

$$=\frac{2}{3}$$

$$c = 15$$

Answer

$$y = -\frac{3}{2}x + 15$$

Turn over ▶

14

16

$$A = (5, -3)$$

$$B = (3, 5)$$

$$C = (-5, 2)$$

Work out the equation of the line that

is perpendicular to line AB

and

passes through point C

[4 marks]

gradient of AB =
$$\frac{5-(3)}{3-5}$$
 $y = \frac{1}{4}x + c$

$$=\frac{8}{-2}$$

Answer

y = 4x+134

17

$$A = (-4, 5)$$

$$B = (6, 1)$$

$$C = (-8, -9)$$

Work out the equation of the line that

is perpendicular to line AB

and

passes through point C

[4 marks]

$$-9 = -20 + C$$

Answer

$$y = \frac{5}{2}x + 11$$

The equation of line L_1 is y = 3 - 2x

Line L₂ is

perpendicular to line \mathbf{L}_1

and

passes through the point (6, 2)

18 (a) Work out the coordinates of the point where line L_2 intersects the *x*-axis.

[3 marks]

gradient of
$$L_1 = -2$$

gradient of $L_2 = \frac{1}{2}$

At $x - axis$ $y = 0$
 $y = \frac{1}{2}x + c$
 $y = \frac{1}{2}x - 1$
 $z = \frac{1}{2}(6) + c$
 $z = 3 + c$
 $z = 3 + c$
 $z = -1$
 $z = 2x$
 $z = 2x$

Answer (2 , 0)

18 (b) Work out the coordinates of the point where line L_2 intersects the y-axis.

[2 marks]

At y-axis
$$x=0$$

 $y = \frac{1}{2}(0) - 1$
 $y = -1$

Turn over ▶

19 The equation of line L_1 is y = 2x + 2Line L₂ is perpendicular to line L1 and passes through the point (-8, 11) Lines L_1 and L_2 intersect at the point P. Line L_1 intersects the *x*-axis at the point Q. Line L_2 intersects the *x*-axis at the point *R*. Work out the area of triangle PQR. [6 marks] gradient of L = 2 2 > 2 + 2 = 0 gradient of Lz = - 12 リニーな(-8)+0 Lz is y= - 22+7 x=14 R = (14,0) L, and L, intersect when 4x+4 = -x+14 5x = 10

3x = 10 3x = 2 y = 2(2) + 2 y = 2(2) + 2Area = $\frac{1}{2} \times 15 \times 6$

Answer

_units²

