Circle Theorems

SCAN ME

REVISE THIS TOPIC

$1 A, B, C$ and D are points on the circumference of a circle with centre O.

Angle $A B D=81^{\circ}$
Angle $B D C=42^{\circ}$
(a) Work out the size of angle $C A B$.
(b) Work out the size of angle $A C D$.

(1)

(1)

(1)
$2 A, B$ and C are points on the circumference of a circle with centre O.

Angle $A B C=79^{\circ}$

(a) Work out the size of angle $C A B$.
(b) Give a reason for your answer to part (a)
\qquad
(1) The angle in a semicircle is 90°
Angles in a triangle add to 180°
$3 A, B$ and C are points on the circumference of a circle with centre O.

Angle $C A B=29^{\circ}$

(a) Work out the size of angle $C O B$.
(b) Give a reason for your answer to part (a)

The angle at the centre is twice the angle at the circumference.
$4 A, B, C$ and D are points on the circumference of a circle with centre O.

Angle $A D C=96^{\circ}$
Angle $B C D=115^{\circ}$

(a) Work out the size of angle $A B C$.
(b) Give a reason for your answer to part (a)

(1)

Opposite angles in a cyclic quadrilateral add to 180°

$5 A, B$, and C are points on the circumference of a circle with centre O.
$A B$ is the tangent to the circle at point C.

(a) Write down the size of angle $O C B$.
(b) Give a reason for your answer to part (a)
(1) A tangent meets a radius at 90°
$6 A, B, C$ and D are points on the circumference of a circle with centre O.

Angle $D A C=68^{\circ}$
Angle $A D O=45^{\circ}$
Work out the size of angle $A B C$.
Give reasons for each stage of your working.
Angle $D O C=136^{\circ}$
The angle at the centre is twice the angle at the circumference.
Angle $O D C=$ Angle $O C D=22^{\circ}$
Base angles in an isosceles triangle we equal
Angle $A D C=22+45$

$$
=67
$$

Angle $A B C=180-67$

$$
=113
$$

Opposite angles in a cyclic quadrilateral
add to 180°
\qquad
(Total for Question 6 is 4 marks)
@1stclassmaths
$7 A, B, C$ and D are points on the circumference of a circle with centre O. $E F$ is the tangent to the circle at point D.

Angle $A C D=84^{\circ}$
Angle $C D F=53^{\circ}$
Work out the size of angle $A B C$.
Give reasons for each stage of your working.
Angle $D A C=53^{\circ}$
Alternate segment theorem
Angle $A D C=43^{\circ}$
Angles in a triangle add to 180° Angle $\begin{aligned} A B C & =180-43 \\ & =137^{\circ}\end{aligned}$

$$
=137^{\circ}
$$

Opposite angles in a cyclic quadrilateral
add to 180°
\qquad
(Total for Question 7 is 4 marks)
$8 A, B$, and C are points on the circumference of a circle with centre O.

Angle $A O B=130^{\circ}$
Work out the size of angle $A C B$.
Give reasons for each stage of your working.
Angle $A P B=65^{\circ}$
The angle at the centre is twice the an le at the circumference.

Angle $\begin{aligned} A B C & =180-65 \\ & =115\end{aligned}$ Opposite angles in a cyclic quadrilateral
add to 180°

(Total for Question 8 is $\mathbf{3}$ marks)
$9 \quad A, B, C$ and D are points on the circumference of a circle with centre O.

Angle $B A D=79^{\circ}$
$B A=B D$
Lines $A B$ and $D C$ are parallel.
Work out the size of angle $D B C$.
Give reasons for each stage of your working.
Angle $B A D=$ Angle $B D A=79^{\circ}$
Base angles in an isosceles triangle we equal Angle $A B D=22^{\circ}$
Angles in a triangle add to 180° Angle $B D=$ Angle $A B D$
Alternate angles are equal
Angle $\begin{aligned} A B C & =180-43 \\ & =137^{\circ}\end{aligned}$

$$
=137^{\circ}
$$

Opposite angles in a cyclic quadrilateral add to 180°
Angle $D B C=57^{\circ}$
Angles in a triangle add to 180°
$10 A, B$ and C are points on the circumference of a circle with centre O.

Work out the size of angle BAC.
Give reasons for each stage of your working.
Angle $C B E=90-27$

$$
=63^{\circ}
$$

A tangent meets a radius at 90°
Angle $B A C=63^{\circ}$
Alternate segment theorem
@1stclassmaths
$11 C$ and E are points on the circumference of a circle with centre O.

$A B$ and $A D$ are tangents to the circle at C and E.
Angle $E A C=70^{\circ}$
(a) Work out the size of angle $C O E$.

Angle $A E O=$ Angle $A C O=90^{\circ}$
A tangent meets a radius at 90°
Angle $C O E=110^{\circ}$ Angles in a quadric lateral

$$
O C=5 \mathrm{~cm}
$$

$$
\text { add to } 360^{\circ}
$$

(2)
(b) Work out the length of $C A$.

Give your answer to 1 decimal place.

Angle $\mathrm{CAO}=35^{\circ}$

$$
\begin{aligned}
& \tan (35)=\frac{5}{C A} \\
& C A=\frac{5}{\tan (35)} \\
& C A=7 \cdot 1407 \ldots
\end{aligned}
$$

\qquad
(Total for Question 11 is 4 marks)
@1stclassmaths
$12 A$ and B are points on the circumference of a circle with centre O.

$D C$ and $E C$ are tangents to the circle at A and B.
Angle $A C B=44^{\circ}$
Angle $B A F=25^{\circ}$
[Reasons not required in this Q]
Work out the size of angle $F B C$.
Angle $A O B=136^{\circ}$ A tangent meets a radius at 90° and angles in a quadrilateral add to 360° Angle $A B O=$ Angle $B A O=22^{\circ}$
Base angles in an isosceles triangle are equal Angle $A P B=68^{\circ}$
The angle at the centre is twice the angle at the circumference.
Angle $A F B=112^{\circ}$
Opposite angles in a cyclic quadrilateral add to 180°
Angle $A B F=43^{\circ}$ Angles in a triangle add to 180° Angle $F B C=25^{\circ}$

(Total for Question 12 is 4 marks)
$13 A, B$ and C are points on the circumference of a circle with centre O.

$E F$ is the tangent to the circle at C.
Angle $A C E=73^{\circ}$
Angle $F A B=5 \times$ Angle $C A F$
Work out the size of angle $A F C$.
[Reasons not required in this Q]
Angle $A C B=90^{\circ}$ The angle in a semicircle is 90° $90 \div 6=15$
Angle $C A F=15^{\circ}$
Angle $E C B=90^{\circ} \quad$ Angle $A C B=17^{\circ}$
A tangent meets a radius at 90°
Angle $A P C=148^{\circ}$ Angles in a branle add to 180°
Angle $C P F=32^{\circ}$ Angles on a straight line add to 180°
Angle AFC $=58^{\circ}$ Angles in a triangle add to 180°
\qquad
@1stclassmaths
$14 A, B$ and C are points on the circumference of a circle with centre O.

$D E$ and $F G$ are tangents to the circle at A and B that intersect at the point P. Angle $A P B=78^{\circ}$
(a) Work out the size of angle $A C B$.
[Reasons not required in this Q] Angle $A O B=102^{\circ}$ A tangent meets a radius at 90° and angles in a quadrilateral add to 360° Angle $A C B=51^{\circ}$ Angle at the circumference is half the angle at the centre
(b) Work out the size of angle $A B P$.

Angle $A B O=$ Angle $B A O=39^{\circ}$
Base angles in an isosceles triangle are equal
Angle $A B P=90-39$

$$
=51
$$

A tangent meets a radius at 90°

15

A, B, C and D are points on the circumference of a circle.
$A B C D$ is a trapezium with $A B$ parallel to $D C$.
$A B=A C$
Work out the size of angle $D A C$.
[Rearms not required in this Q] You must show all your working.

$$
3 x+2+3 x-8=180^{\circ}
$$

Opposite angles in a cyclic quadrilateral add to 180°
$6 x$

$$
\begin{array}{rlrl}
-6 & =180 & & 3(31)+2=95 \\
6 x & =186 & 3(31)-8=85 \\
x & =31^{\circ} &
\end{array}
$$

Angle $A C B=$ Angle $A B C=85$
Angle $C A B=10^{\circ}$ Angles in a triangle add to 180°
Angle $D C A=$ Angle $C A B$ alternate angles are equal
Angle $D A C=75^{\circ}$ Angles in a triangle add to 180°

16

B and D are points on the circumference of a circle, centre O.
$A B C$ and $A D E$ are tangents to the circle.
(a) Work out value of x.
[Reasons not required in this Q]
You must show all your working.
Angle $B O D=2(5 x-7)$
(twill angle at circumference)

$$
\begin{aligned}
10 x-14 & =180-x-7 \\
10 x-14 & =173-x \\
11 x & =187 \\
x & =17
\end{aligned}
$$

Angle $B O D=180-(x+7)$ (angles in quadrilateral add to 30°)
$x=17$
$A D=30 \mathrm{~cm}$
(b) Work out the radius of the circle.

Give your answer to three significant figures.
$B A D=24^{\circ}$
$O A D=12^{\circ}$

$$
\begin{aligned}
& \tan (12)=\frac{O D}{30} \\
& O D=30 \tan (12)
\end{aligned}
$$

\qquad

